Question 2 (Multiple Choice Worth 5 points)

What is the simplified form of the expression [tex]\frac{x^2-4x-21}{4(x+3)}[/tex]?

A. [tex]\frac{x+7}{x+3}[/tex]
B. [tex]\frac{x-7}{x+3}[/tex]
C. [tex]\frac{x+7}{4}[/tex]
D. [tex]\frac{x-7}{4}[/tex]



Answer :

To simplify the expression [tex]\(\frac{x^2 - 4x - 21}{4(x+3)}\)[/tex], follow these steps:

### Step 1: Factor the numerator
The numerator is a quadratic expression [tex]\(x^2 - 4x - 21\)[/tex]. To factor this, we need to find two numbers that multiply to [tex]\(-21\)[/tex] and add to [tex]\(-4\)[/tex].

The factors of [tex]\(-21\)[/tex] are:
[tex]\[ 1 \cdot (-21), \quad (-1) \cdot 21, \quad 3 \cdot (-7), \quad (-3) \cdot 7 \][/tex]
We need to find a pair that sums to [tex]\(-4\)[/tex]:
[tex]\[ 3 + (-7) = -4 \][/tex]
So, we can factor the quadratic expression as:
[tex]\[ x^2 - 4x - 21 = (x + 3)(x - 7) \][/tex]

### Step 2: Substitute the factored form into the original expression
The original expression becomes:
[tex]\[ \frac{(x + 3)(x - 7)}{4(x + 3)} \][/tex]

### Step 3: Simplify by canceling out the common term
Since [tex]\(x + 3\)[/tex] appears in both the numerator and the denominator, we can cancel out [tex]\(x + 3\)[/tex] (as long as [tex]\(x \neq -3\)[/tex], because division by zero is undefined):

[tex]\[ \frac{(x + 3)(x - 7)}{4(x + 3)} = \frac{x - 7}{4} \quad \text{for} \quad x \neq -3 \][/tex]

### Conclusion
The simplified form of the expression is:

[tex]\[ \frac{x - 7}{4} \][/tex]

Thus, the correct choice is:

[tex]\(\boxed{\frac{x-7}{4}}\)[/tex]