Which of the following ordered pairs is a solution to the inequality [tex]$y \ \textgreater \ \frac{1}{2} x + 5$[/tex]?

A. [tex]$(10, 9)$[/tex]
B. [tex]$(8, 10)$[/tex]
C. [tex]$(4, 6)$[/tex]
D. [tex]$(2, 6)$[/tex]



Answer :

To determine which ordered pairs are solutions to the inequality [tex]\(y > \frac{1}{2} x + 5\)[/tex], we need to check each pair one by one.

1. Evaluate the pair (10, 9):
[tex]\[ y = 9, \quad x = 10 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 10 + 5 = 5 + 5 = 10 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 9 > 10 \quad \text{(False)} \][/tex]

2. Evaluate the pair (8, 10):
[tex]\[ y = 10, \quad x = 8 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 8 + 5 = 4 + 5 = 9 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 10 > 9 \quad \text{(True)} \][/tex]

3. Evaluate the pair (4, 6):
[tex]\[ y = 6, \quad x = 4 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 4 + 5 = 2 + 5 = 7 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 7 \quad \text{(False)} \][/tex]

4. Evaluate the pair (2, 6):
[tex]\[ y = 6, \quad x = 2 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 2 + 5 = 1 + 5 = 6 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 6 \quad \text{(False)} \][/tex]

Based on our evaluation, the only ordered pair that satisfies the inequality [tex]\(y > \frac{1}{2} x + 5\)[/tex] is [tex]\((8, 10)\)[/tex]. Therefore, the answer is:

[tex]\[ (8, 10) \][/tex]