Answer :
To determine which ordered pairs are solutions to the inequality [tex]\(y > \frac{1}{2} x + 5\)[/tex], we need to check each pair one by one.
1. Evaluate the pair (10, 9):
[tex]\[ y = 9, \quad x = 10 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 10 + 5 = 5 + 5 = 10 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 9 > 10 \quad \text{(False)} \][/tex]
2. Evaluate the pair (8, 10):
[tex]\[ y = 10, \quad x = 8 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 8 + 5 = 4 + 5 = 9 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 10 > 9 \quad \text{(True)} \][/tex]
3. Evaluate the pair (4, 6):
[tex]\[ y = 6, \quad x = 4 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 4 + 5 = 2 + 5 = 7 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 7 \quad \text{(False)} \][/tex]
4. Evaluate the pair (2, 6):
[tex]\[ y = 6, \quad x = 2 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 2 + 5 = 1 + 5 = 6 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 6 \quad \text{(False)} \][/tex]
Based on our evaluation, the only ordered pair that satisfies the inequality [tex]\(y > \frac{1}{2} x + 5\)[/tex] is [tex]\((8, 10)\)[/tex]. Therefore, the answer is:
[tex]\[ (8, 10) \][/tex]
1. Evaluate the pair (10, 9):
[tex]\[ y = 9, \quad x = 10 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 10 + 5 = 5 + 5 = 10 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 9 > 10 \quad \text{(False)} \][/tex]
2. Evaluate the pair (8, 10):
[tex]\[ y = 10, \quad x = 8 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 8 + 5 = 4 + 5 = 9 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 10 > 9 \quad \text{(True)} \][/tex]
3. Evaluate the pair (4, 6):
[tex]\[ y = 6, \quad x = 4 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 4 + 5 = 2 + 5 = 7 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 7 \quad \text{(False)} \][/tex]
4. Evaluate the pair (2, 6):
[tex]\[ y = 6, \quad x = 2 \][/tex]
Substitute [tex]\(x\)[/tex] into the expression on the right-hand side:
[tex]\[ \frac{1}{2} \cdot 2 + 5 = 1 + 5 = 6 \][/tex]
Compare [tex]\(y\)[/tex] with the result:
[tex]\[ 6 > 6 \quad \text{(False)} \][/tex]
Based on our evaluation, the only ordered pair that satisfies the inequality [tex]\(y > \frac{1}{2} x + 5\)[/tex] is [tex]\((8, 10)\)[/tex]. Therefore, the answer is:
[tex]\[ (8, 10) \][/tex]