Factor completely:

[tex]\[ 24x^5 - 36x^4 + 60x^3 \][/tex]

A. [tex]\( 12x^3(2x^2 - 3x + 5) \)[/tex]
B. [tex]\( 12x^2(2x^3 - 3x^2 + 5x) \)[/tex]
C. [tex]\( 6x^2(4x^3 - 6x^2 + 10x) \)[/tex]
D. [tex]\( 6x^3(4x^2 - 6x + 10) \)[/tex]



Answer :

Alright, let's tackle the problem of factoring the polynomial expression [tex]\( 24 x^5 - 36 x^4 + 60 x^3 \)[/tex].

To factor this expression completely, we'll follow these steps:

1. Find the greatest common factor (GCF) of the coefficients and the powers of [tex]\( x \)[/tex].

2. Factor out the GCF from the given polynomial.

3. Express the remaining polynomial in its simplest factored form.

Step 1: Identify the Greatest Common Factor (GCF)

Look at the coefficients of [tex]\( x \)[/tex] in the polynomial [tex]\( 24 x^5 - 36 x^4 + 60 x^3 \)[/tex].
The GCF of 24, 36, and 60 is 12.
For the variables, the smallest power of [tex]\( x \)[/tex] is [tex]\( x^3 \)[/tex], so the GCF for the entire expression is [tex]\( 12 x^3 \)[/tex].

Step 2: Factor out the GCF

Factor [tex]\( 12 x^3 \)[/tex] out of each term in the polynomial:

[tex]\[ 24 x^5 - 36 x^4 + 60 x^3 = 12 x^3 \left(\frac{24 x^5}{12 x^3}\right) - 12 x^3 \left(\frac{36 x^4}{12 x^3}\right) + 12 x^3 \left(\frac{60 x^3}{12 x^3}\right) \][/tex]

This simplifies to:

[tex]\[ 24 x^5 - 36 x^4 + 60 x^3 = 12 x^3 (2 x^2) - 12 x^3 (3 x) + 12 x^3 (5) \][/tex]

[tex]\[ = 12 x^3 (2 x^2 - 3 x + 5) \][/tex]

Step 3: Verify the remaining polynomial is in simplest form

The polynomial inside the parentheses, [tex]\( 2 x^2 - 3 x + 5 \)[/tex], cannot be factored further using real numbers because the discriminant [tex]\((b^2 - 4ac)\)[/tex] [tex]\(= (-3)^2 - 425 = 9 - 40 = -31\)[/tex], which is negative. Hence it does not have real roots.

Therefore, the completely factored form of the polynomial [tex]\( 24 x^5 - 36 x^4 + 60 x^3 \)[/tex] is:

[tex]\[ 12 x^3 (2 x^2 - 3 x + 5) \][/tex]

Which matches option (A):

[tex]\[ 12 x^3\left(2 x^2-3 x+5\right) \][/tex]

So, the correct answer is:
(A) [tex]\( 12 x^3\left(2 x^2 - 3 x + 5\right) \)[/tex].