Answer :
Let's simplify the given algebraic expression step by step.
Given expression:
[tex]\[ \left(\frac{2 x^{10} y^5}{x^7 \cdot x^{-4}}\right)^3 \][/tex]
First, simplify the denominator inside the fraction:
[tex]\[ x^7 \cdot x^{-4} = x^{7 + (-4)} = x^{3} \][/tex]
Now rewrite the expression with the simplified denominator:
[tex]\[ \left(\frac{2 x^{10} y^5}{x^3}\right)^3 \][/tex]
Next, simplify the fraction inside the brackets. Since the bases are the same (both are [tex]\(x\)[/tex]), subtract the exponents:
[tex]\[ \frac{2 x^{10} y^5}{x^3} = 2 x^{10 - 3} y^5 = 2 x^7 y^5 \][/tex]
Now, our expression looks like this:
[tex]\[ (2 x^7 y^5)^3 \][/tex]
Distribute the exponent 3 to each term inside the parentheses:
[tex]\[ (2^3) \cdot (x^7)^3 \cdot (y^5)^3 \][/tex]
Calculate each part separately:
[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ (x^7)^3 = x^{7 \cdot 3} = x^{21} \][/tex]
[tex]\[ (y^5)^3 = y^{5 \cdot 3} = y^{15} \][/tex]
Putting it all together, we get:
[tex]\[ 8 x^{21} y^{15} \][/tex]
Among the given options, our simplified expression [tex]\(8 x^{21} y^{15}\)[/tex] matches option (C).
Therefore, the correct answer is:
[tex]\[ \boxed{8 x^{21} y^{15}} \][/tex]
Given expression:
[tex]\[ \left(\frac{2 x^{10} y^5}{x^7 \cdot x^{-4}}\right)^3 \][/tex]
First, simplify the denominator inside the fraction:
[tex]\[ x^7 \cdot x^{-4} = x^{7 + (-4)} = x^{3} \][/tex]
Now rewrite the expression with the simplified denominator:
[tex]\[ \left(\frac{2 x^{10} y^5}{x^3}\right)^3 \][/tex]
Next, simplify the fraction inside the brackets. Since the bases are the same (both are [tex]\(x\)[/tex]), subtract the exponents:
[tex]\[ \frac{2 x^{10} y^5}{x^3} = 2 x^{10 - 3} y^5 = 2 x^7 y^5 \][/tex]
Now, our expression looks like this:
[tex]\[ (2 x^7 y^5)^3 \][/tex]
Distribute the exponent 3 to each term inside the parentheses:
[tex]\[ (2^3) \cdot (x^7)^3 \cdot (y^5)^3 \][/tex]
Calculate each part separately:
[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ (x^7)^3 = x^{7 \cdot 3} = x^{21} \][/tex]
[tex]\[ (y^5)^3 = y^{5 \cdot 3} = y^{15} \][/tex]
Putting it all together, we get:
[tex]\[ 8 x^{21} y^{15} \][/tex]
Among the given options, our simplified expression [tex]\(8 x^{21} y^{15}\)[/tex] matches option (C).
Therefore, the correct answer is:
[tex]\[ \boxed{8 x^{21} y^{15}} \][/tex]