Simplify:

[tex]\[
\left(\frac{2 x^{10} y^5}{x^7 \cdot x^{-4}}\right)^3
\][/tex]

A. [tex]\(8 x^9 y^{15}\)[/tex]

B. [tex]\(8 x y^{36}\)[/tex]

C. [tex]\(8 x^{21} y^{15}\)[/tex]

D. [tex]\(6 x^6 y^8\)[/tex]



Answer :

Let's simplify the given algebraic expression step by step.

Given expression:
[tex]\[ \left(\frac{2 x^{10} y^5}{x^7 \cdot x^{-4}}\right)^3 \][/tex]

First, simplify the denominator inside the fraction:

[tex]\[ x^7 \cdot x^{-4} = x^{7 + (-4)} = x^{3} \][/tex]

Now rewrite the expression with the simplified denominator:

[tex]\[ \left(\frac{2 x^{10} y^5}{x^3}\right)^3 \][/tex]

Next, simplify the fraction inside the brackets. Since the bases are the same (both are [tex]\(x\)[/tex]), subtract the exponents:

[tex]\[ \frac{2 x^{10} y^5}{x^3} = 2 x^{10 - 3} y^5 = 2 x^7 y^5 \][/tex]

Now, our expression looks like this:

[tex]\[ (2 x^7 y^5)^3 \][/tex]

Distribute the exponent 3 to each term inside the parentheses:

[tex]\[ (2^3) \cdot (x^7)^3 \cdot (y^5)^3 \][/tex]

Calculate each part separately:

[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ (x^7)^3 = x^{7 \cdot 3} = x^{21} \][/tex]
[tex]\[ (y^5)^3 = y^{5 \cdot 3} = y^{15} \][/tex]

Putting it all together, we get:

[tex]\[ 8 x^{21} y^{15} \][/tex]

Among the given options, our simplified expression [tex]\(8 x^{21} y^{15}\)[/tex] matches option (C).

Therefore, the correct answer is:
[tex]\[ \boxed{8 x^{21} y^{15}} \][/tex]