The table represents a function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & -2 \\
\hline
-1 & 5 \\
\hline
3 & 4 \\
\hline
5 & -8 \\
\hline
\end{tabular}

What is [tex]$f(5)$[/tex]?
A. -8
B. -1
C. 1
D. 8



Answer :

To find [tex]\( f(5) \)[/tex] from the given function table, we'll look up the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 5 \)[/tex].

Here is the provided table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -4 & -2 \\ \hline -1 & 5 \\ \hline 3 & 4 \\ \hline 5 & -8 \\ \hline \end{tabular} \][/tex]

We are interested in the value corresponding to [tex]\( x = 5 \)[/tex]. From the table, we see:

When [tex]\( x \)[/tex] is [tex]\( 5 \)[/tex], the corresponding value [tex]\( f(5) \)[/tex] is [tex]\( -8 \)[/tex].

Therefore, [tex]\( f(5) = -8 \)[/tex].

So the correct answer is [tex]\( -8 \)[/tex].