Answer :

To find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations:

[tex]\[ \begin{aligned} \frac{3x - y}{y - 2} &= 4 \\ \frac{x + 2y}{2x - y} &= 3 \end{aligned} \][/tex]

let's solve them step by step.

### Step 1: Solve the first equation

First, isolate the fraction in the first equation:

[tex]\[ \frac{3x - y}{y - 2} = 4 \][/tex]

Multiply both sides by [tex]\( y - 2 \)[/tex] to eliminate the denominator:

[tex]\[ 3x - y = 4(y - 2) \][/tex]

Distribute the 4 on the right side:

[tex]\[ 3x - y = 4y - 8 \][/tex]

Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:

[tex]\[ 3x - y - 4y = -8 \][/tex]

Combine like terms:

[tex]\[ 3x - 5y = -8 \quad \text{(1)} \][/tex]

### Step 2: Solve the second equation

Next, isolate the fraction in the second equation:

[tex]\[ \frac{x + 2y}{2x - y} = 3 \][/tex]

Multiply both sides by [tex]\( 2x - y \)[/tex]:

[tex]\[ x + 2y = 3(2x - y) \][/tex]

Distribute the 3 on the right side:

[tex]\[ x + 2y = 6x - 3y \][/tex]

Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:

[tex]\[ x - 6x + 2y + 3y = 0 \][/tex]

Combine like terms:

[tex]\[ -5x + 5y = 0 \][/tex]

Divide both sides by 5:

[tex]\[ -x + y = 0 \quad \text{(2)} \][/tex]

### Step 3: Solve the linear system

Now we solve the linear system composed of equations (1) and (2):

[tex]\[ \begin{aligned} 3x - 5y &= -8 \quad \text{(1)} \\ -x + y &= 0 \quad \text{(2)} \end{aligned} \][/tex]

From equation (2), we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:

[tex]\[ y = x \][/tex]

Substitute [tex]\( y = x \)[/tex] into equation (1):

[tex]\[ 3x - 5(x) = -8 \][/tex]

Simplify and solve for [tex]\( x \)[/tex]:

[tex]\[ 3x - 5x = -8 \\ -2x = -8 \\ x = 4 \][/tex]

Since [tex]\( y = x \)[/tex], we have:

[tex]\[ y = 4 \][/tex]

### Conclusion

The solution to the system of equations is:

[tex]\[ x = 4, \quad y = 4 \][/tex]