Answer :
To find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations:
[tex]\[ \begin{aligned} \frac{3x - y}{y - 2} &= 4 \\ \frac{x + 2y}{2x - y} &= 3 \end{aligned} \][/tex]
let's solve them step by step.
### Step 1: Solve the first equation
First, isolate the fraction in the first equation:
[tex]\[ \frac{3x - y}{y - 2} = 4 \][/tex]
Multiply both sides by [tex]\( y - 2 \)[/tex] to eliminate the denominator:
[tex]\[ 3x - y = 4(y - 2) \][/tex]
Distribute the 4 on the right side:
[tex]\[ 3x - y = 4y - 8 \][/tex]
Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:
[tex]\[ 3x - y - 4y = -8 \][/tex]
Combine like terms:
[tex]\[ 3x - 5y = -8 \quad \text{(1)} \][/tex]
### Step 2: Solve the second equation
Next, isolate the fraction in the second equation:
[tex]\[ \frac{x + 2y}{2x - y} = 3 \][/tex]
Multiply both sides by [tex]\( 2x - y \)[/tex]:
[tex]\[ x + 2y = 3(2x - y) \][/tex]
Distribute the 3 on the right side:
[tex]\[ x + 2y = 6x - 3y \][/tex]
Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:
[tex]\[ x - 6x + 2y + 3y = 0 \][/tex]
Combine like terms:
[tex]\[ -5x + 5y = 0 \][/tex]
Divide both sides by 5:
[tex]\[ -x + y = 0 \quad \text{(2)} \][/tex]
### Step 3: Solve the linear system
Now we solve the linear system composed of equations (1) and (2):
[tex]\[ \begin{aligned} 3x - 5y &= -8 \quad \text{(1)} \\ -x + y &= 0 \quad \text{(2)} \end{aligned} \][/tex]
From equation (2), we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x \][/tex]
Substitute [tex]\( y = x \)[/tex] into equation (1):
[tex]\[ 3x - 5(x) = -8 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x - 5x = -8 \\ -2x = -8 \\ x = 4 \][/tex]
Since [tex]\( y = x \)[/tex], we have:
[tex]\[ y = 4 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ x = 4, \quad y = 4 \][/tex]
[tex]\[ \begin{aligned} \frac{3x - y}{y - 2} &= 4 \\ \frac{x + 2y}{2x - y} &= 3 \end{aligned} \][/tex]
let's solve them step by step.
### Step 1: Solve the first equation
First, isolate the fraction in the first equation:
[tex]\[ \frac{3x - y}{y - 2} = 4 \][/tex]
Multiply both sides by [tex]\( y - 2 \)[/tex] to eliminate the denominator:
[tex]\[ 3x - y = 4(y - 2) \][/tex]
Distribute the 4 on the right side:
[tex]\[ 3x - y = 4y - 8 \][/tex]
Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:
[tex]\[ 3x - y - 4y = -8 \][/tex]
Combine like terms:
[tex]\[ 3x - 5y = -8 \quad \text{(1)} \][/tex]
### Step 2: Solve the second equation
Next, isolate the fraction in the second equation:
[tex]\[ \frac{x + 2y}{2x - y} = 3 \][/tex]
Multiply both sides by [tex]\( 2x - y \)[/tex]:
[tex]\[ x + 2y = 3(2x - y) \][/tex]
Distribute the 3 on the right side:
[tex]\[ x + 2y = 6x - 3y \][/tex]
Rearrange to gather all [tex]\( y \)[/tex]-terms on one side:
[tex]\[ x - 6x + 2y + 3y = 0 \][/tex]
Combine like terms:
[tex]\[ -5x + 5y = 0 \][/tex]
Divide both sides by 5:
[tex]\[ -x + y = 0 \quad \text{(2)} \][/tex]
### Step 3: Solve the linear system
Now we solve the linear system composed of equations (1) and (2):
[tex]\[ \begin{aligned} 3x - 5y &= -8 \quad \text{(1)} \\ -x + y &= 0 \quad \text{(2)} \end{aligned} \][/tex]
From equation (2), we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x \][/tex]
Substitute [tex]\( y = x \)[/tex] into equation (1):
[tex]\[ 3x - 5(x) = -8 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x - 5x = -8 \\ -2x = -8 \\ x = 4 \][/tex]
Since [tex]\( y = x \)[/tex], we have:
[tex]\[ y = 4 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ x = 4, \quad y = 4 \][/tex]