Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$(5-3 \times[(-6) \div(5+1)-(5)]-[(5+6)-(-7+9)-(-2)]$[/tex]
-----

Response:
Simplify the expression:

[tex]\[ 5 - 3 \times \left[ \frac{-6}{5+1} - 5 \right] - \left[ (5+6) - (-7+9) - (-2) \right] \][/tex]



Answer :

To solve the expression [tex]\( (5 - 3 \times [(-6) \div (5 + 1) - 5] - [(5 + 6) - (-7 + 9) - (-2)]) \)[/tex], we will go through it step by step:

1. Calculate the expression inside the first set of brackets:
[tex]\[ (-6) \div (5 + 1) \][/tex]
Let's simplify inside the parenthesis first:
[tex]\[ 5 + 1 = 6 \][/tex]
Now perform the division:
[tex]\[ (-6) \div 6 = -1 \][/tex]

2. Subtract 5 from the result:
[tex]\[ -1 - 5 = -6 \][/tex]

3. Multiply by 3:
[tex]\[ 3 \times (-6) = -18 \][/tex]

4. Calculate the expression inside the second set of brackets:
First, simplify the sub-expressions:
[tex]\[ (5 + 6) - (-7 + 9) - (-2) \][/tex]
Perform the additions and subtractions within the nested parentheses:
[tex]\[ 5 + 6 = 11 \][/tex]
[tex]\[ -7 + 9 = 2 \][/tex]
Now substitute back into the expression:
[tex]\[ 11 - 2 - (-2) \][/tex]
Handling the double negative, we get:
[tex]\[ 11 - 2 + 2 = 11 \][/tex]

5. Combine all parts of the expression:
The overall expression now looks like this:
[tex]\[ 5 - (-18) - 11 \][/tex]
Simplify by performing the subtraction:
[tex]\[ 5 + 18 - 11 = 23 - 11 = 12 \][/tex]

In conclusion, the value of the expression [tex]\( (5 - 3 \times [(-6) \div (5 + 1) - 5] - [(5 + 6) - (-7 + 9) - (-2)]) \)[/tex] is [tex]\( 12 \)[/tex].