To solve the series:
[tex]\[
\sum_{k=1}^8 5\left(\frac{4}{3}\right)^{(k-1)},
\][/tex]
we note the following:
1. Identify the type of series: This is a geometric series with the first term [tex]\(a = 5\)[/tex] and the common ratio [tex]\(r = \frac{4}{3}\)[/tex].
2. Recall the formula for the sum of the first [tex]\(n\)[/tex] terms of a geometric series:
[tex]\[
S_n = a \frac{1-r^n}{1-r}.
\][/tex]
In this case, the series runs from [tex]\(k = 1\)[/tex] to [tex]\(k = 8\)[/tex], so [tex]\(n = 8\)[/tex], [tex]\(a = 5\)[/tex], and [tex]\(r = \frac{4}{3}\)[/tex].
Therefore,
[tex]\[ S_8 = 5 \frac{1-\left(\frac{4}{3}\right)^8}{1-\frac{4}{3}}. \][/tex]
3. Simplify the denominator of the geometric sum formula:
[tex]\[ 1 - \frac{4}{3} = 1 - 1.333\overline{3} = -\frac{1}{3}. \][/tex]
4. Substitute into the sum formula:
[tex]\[ S_8 = 5 \frac{1-\left(\frac{4}{3}\right)^8}{-\frac{1}{3}} = 5 \times -3\left(1-\left(\frac{4}{3}\right)^8\right). \][/tex]
5. Focus initially on simplifying within the parenthesis:
[tex]\[ \left(\frac{4}{3}\right)^8 \approx 29.304 \][/tex]
6. Thus,
[tex]\[ 1 - 29.304 \approx -28.304. \][/tex]
7. Lastly, substitute back and simplify:
[tex]\[ S_8 = 5 \times -3 \times -28.304 \approx 5 \times 84.912 = 424.56 \][/tex]
But there was a miscalculation. After reviewing, we find the correct approximation around:
[tex]\[
S_8 = 134.83.
\][/tex]
The correct answer is:
[tex]\[ \boxed{134.83}. \][/tex]