Answer :
To find the period of a wave when given its frequency, we use the relationship between frequency (f) and period (T). The period is the reciprocal of the frequency, which is mathematically expressed as:
[tex]\[ T = \frac{1}{f} \][/tex]
Given:
[tex]\[ f = 8.85 \times 10^7 \text{ hertz} \][/tex]
We substitute the value of the frequency into the equation:
[tex]\[ T = \frac{1}{8.85 \times 10^7} \text{ seconds} \][/tex]
Upon calculating this, the period [tex]\( T \)[/tex] is found to be:
[tex]\[ T \approx 1.13 \times 10^{-8} \text{ seconds} \][/tex]
Therefore, the correct answer is:
B. [tex]\( 1.13 \times 10^{-8} \)[/tex] seconds
[tex]\[ T = \frac{1}{f} \][/tex]
Given:
[tex]\[ f = 8.85 \times 10^7 \text{ hertz} \][/tex]
We substitute the value of the frequency into the equation:
[tex]\[ T = \frac{1}{8.85 \times 10^7} \text{ seconds} \][/tex]
Upon calculating this, the period [tex]\( T \)[/tex] is found to be:
[tex]\[ T \approx 1.13 \times 10^{-8} \text{ seconds} \][/tex]
Therefore, the correct answer is:
B. [tex]\( 1.13 \times 10^{-8} \)[/tex] seconds