Let's address the given equation step-by-step, noting that the second part of the equation "−(5u−6b)/(2u)8∞" does not seem to make mathematical sense:
### Given Equation:
[tex]\[ \frac{7a - 5b}{b} = 70 \][/tex]
Step 1: Simplify the equation
First, we want to isolate [tex]\(a\)[/tex]. Let's start by simplifying the fraction on the left-hand side:
[tex]\[ \frac{7a - 5b}{b} = 70 \][/tex]
[tex]\[ 7a - 5b = 70b \][/tex] (multiply both sides by [tex]\(b\)[/tex])
Step 2: Solve for [tex]\(a\)[/tex]
Next, we need to solve for [tex]\(a\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ 7a = 70b + 5b \][/tex]
[tex]\[ 7a = 75b \][/tex]
[tex]\[ a = \frac{75b}{7} \][/tex]
[tex]\[ a = \frac{75}{7} b \][/tex]
Result:
The ratio [tex]\( \frac{a}{b} \)[/tex] is:
[tex]\[ \frac{a}{b} = \frac{75}{7} \][/tex]
### Numerical Result:
By calculating, we find:
[tex]\[ \frac{75}{7} \approx 10.714285714285714 \][/tex]
So, the step-by-step solution shows that the ratio of [tex]\(a\)[/tex] to [tex]\(b\)[/tex] is approximately [tex]\(10.714285714285714\)[/tex]. This result indicates that [tex]\(a\)[/tex] is about 10.714 times [tex]\(b\)[/tex].