Answer :

To find the value of [tex]\(\tan \theta\)[/tex] given that [tex]\(\sin \theta = \frac{2 \sqrt{x}}{x + 1}\)[/tex], we can follow these steps:

1. Compute [tex]\(\sin \theta\)[/tex]:

We are given:
[tex]\[ \sin \theta = \frac{2 \sqrt{x}}{x + 1} \][/tex]

2. Calculate [tex]\(\sin^2 \theta\)[/tex]:

[tex]\[ \sin^2 \theta = \left(\frac{2 \sqrt{x}}{x + 1}\right)^2 = \frac{4x}{(x + 1)^2} \][/tex]

3. Use the Pythagorean identity to find [tex]\(\cos^2 \theta\)[/tex]:

We know that:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]

Therefore:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{4x}{(x + 1)^2} \][/tex]

4. Simplify [tex]\(\cos^2 \theta\)[/tex]:

Finding a common denominator:
[tex]\[ \cos^2 \theta = \frac{(x + 1)^2 - 4x}{(x + 1)^2} \][/tex]

Simplify the numerator:
[tex]\[ (x + 1)^2 - 4x = x^2 + 2x + 1 - 4x = x^2 - 2x + 1 = (x - 1)^2 \][/tex]

Therefore:
[tex]\[ \cos^2 \theta = \frac{(x - 1)^2}{(x + 1)^2} \][/tex]

5. Find [tex]\(\cos \theta\)[/tex]:

Taking the positive square root (assuming [tex]\(\cos \theta\)[/tex] is positive):
[tex]\[ \cos \theta = \frac{|x - 1|}{x + 1} \][/tex]

6. Calculate [tex]\(\tan \theta\)[/tex]:

Using the definition of [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2 \sqrt{x}}{x + 1}}{\frac{|x - 1|}{x + 1}} = \frac{2 \sqrt{x}}{|x - 1|} \][/tex]

Now, let's consider an example to verify the calculations with a specific value for [tex]\(x\)[/tex]. Let [tex]\(x = 4\)[/tex]:

- [tex]\(\sin \theta = \frac{2 \sqrt{4}}{4 + 1} = \frac{2 \cdot 2}{5} = \frac{4}{5} = 0.8\)[/tex]
- [tex]\(\cos \theta = \frac{|4 - 1|}{4 + 1} = \frac{3}{5} = 0.6\)[/tex]
- [tex]\(\tan \theta = \frac{0.8}{0.6} \approx 1.3333\)[/tex]

Therefore, for [tex]\(x = 4\)[/tex], we have:
- [tex]\(\sin \theta = 0.8\)[/tex]
- [tex]\(\cos \theta = 0.6\)[/tex]
- [tex]\(\tan \theta \approx 1.3333\)[/tex]

Thus, the value of [tex]\(\tan \theta\)[/tex] is approximately 1.3333 when [tex]\(x = 4\)[/tex].