Let [tex]\( a, b, c, \)[/tex] and [tex]\( d \)[/tex] be real numbers. Given that [tex]\( a c = 1 \)[/tex], [tex]\(\frac{b+c}{d}\)[/tex] is undefined, and [tex]\( a b c = d \)[/tex], which of the following must be true?

A. [tex]\( a = 0 \)[/tex] or [tex]\( c = 0 \)[/tex]
B. [tex]\( a = 1 \)[/tex] and [tex]\( c = 1 \)[/tex]
C. [tex]\( a = -c \)[/tex]
D. [tex]\( b = 0 \)[/tex]
E. [tex]\( b + c = 0 \)[/tex]



Answer :

Let's analyze the given information and mathematical conditions step-by-step:

1. Given conditions:
- [tex]\(ac = 1\)[/tex]
- [tex]\(\frac{b+c}{d}\)[/tex] is undefined
- [tex]\(abc = d\)[/tex]

2. Condition for [tex]\(\frac{b+c}{d}\)[/tex] to be undefined:
[tex]\(\frac{b+c}{d}\)[/tex] is undefined when the denominator [tex]\(d = 0\)[/tex].

3. First, from [tex]\(ac = 1\)[/tex]:
Since [tex]\(a\)[/tex] and [tex]\(c\)[/tex] are real numbers, neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero because their product is 1. Therefore, we can eliminate option (A).

4. Given [tex]\(d = abc\)[/tex]:
Since we established that [tex]\(d = 0\)[/tex] to make [tex]\(\frac{b+c}{d}\)[/tex] undefined, substitute [tex]\(d\)[/tex] with [tex]\(abc\)[/tex]:
[tex]\[ abc = 0 \][/tex]
Since neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero (from [tex]\(ac = 1\)[/tex]), it follows that [tex]\(b\)[/tex] must be 0.

This confirms that option (D) must be true:
[tex]\[ b = 0 \][/tex]

5. Checking other options:
- Option (B) [tex]\(a = 1\)[/tex] and [tex]\(c = 1\)[/tex]: If this were true, [tex]\(ac = 1 \cdot 1 = 1\)[/tex], which holds true, but this specific combination is not necessary for the given conditions to hold.
- Option (C) [tex]\(a = -c\)[/tex]: Substituting in [tex]\(ac = 1\)[/tex], we get [tex]\(a \cdot (-a) = -a^2 = 1\)[/tex], which implies [tex]\(a^2 = -1\)[/tex]. This is not possible for real number [tex]\(a\)[/tex].
- Option (E) [tex]\(b + c = 0\)[/tex]: Since [tex]\(b = 0\)[/tex], we get [tex]\(0 + c = 0\)[/tex], which implies [tex]\(c = 0\)[/tex]. This contradicts our given fact that [tex]\(c\)[/tex] cannot be zero. Therefore, this is not a valid option.

Given the conditions for the expressions to be defined and what we derived from the given equations, the condition that must be true is:

D. [tex]\(b = 0\)[/tex]