The model shows the expression [tex]$30+12$[/tex].
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Which expression is equivalent to this sum?

A. [tex]$42$[/tex]

B. [tex]$30 + 12$[/tex]

C. [tex]$50 - 8$[/tex]

D. [tex]$20 + 22$[/tex]



Answer :

Given the mathematical expression [tex]\(30 + 12\)[/tex], we have the objective of determining the sum of these numbers and finding equivalent expressions.

First, let's compute the sum of [tex]\(30\)[/tex] and [tex]\(12\)[/tex]:
[tex]\[ 30 + 12 = 42 \][/tex]

Thus, the result of the given expression is [tex]\(42\)[/tex].

Next, we look for equivalent expressions that also produce the value [tex]\(42\)[/tex]. Some possible expressions include:
1. Direct value of the sum:
[tex]\[ 42 \][/tex]

2. Original sum:
[tex]\[ 30 + 12 \][/tex]

3. Equivalent multiplication:
Another way to express [tex]\(42\)[/tex] could be through multiplication. For instance:
[tex]\[ 21 \times 2 \][/tex]
This can be verified as:
[tex]\[ 21 \times 2 = 42 \][/tex]

4. Equivalent subtraction:
Another expression could be found by subtracting from a larger number:
[tex]\[ 50 - 8 \][/tex]
Which can be verified as:
[tex]\[ 50 - 8 = 42 \][/tex]

To summarize, the expressions equivalent to the sum [tex]\(30 + 12 = 42\)[/tex] are:
- [tex]\(42\)[/tex]
- [tex]\(30 + 12\)[/tex]
- [tex]\(21 \times 2\)[/tex]
- [tex]\(50 - 8\)[/tex]

These expressions all yield the same result of [tex]\(42\)[/tex] and are therefore equivalent to the original sum of [tex]\(30 + 12\)[/tex].