\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Which expression is equivalent to this sum?

A. [tex]$6(5)+2$[/tex]

B. [tex]$6+5+2$[/tex]

C. [tex]$6+5(2)$[/tex]

D. [tex]$6(5+2)$[/tex]



Answer :

To identify which expression is equivalent to the sum [tex]\( 6 \times 5 + 2 \)[/tex], we will evaluate each expression one by one.

1. Expression: [tex]\( 6 \times 5 + 2 \)[/tex]
- First, perform the multiplication: [tex]\( 6 \times 5 = 30 \)[/tex].
- Then, add 2 to the product: [tex]\( 30 + 2 = 32 \)[/tex].
- So, the value of this expression is 32.

2. Expression: [tex]\( 6 + 5 + 2 \)[/tex]
- Simply add the numbers: [tex]\( 6 + 5 = 11 \)[/tex].
- Then, add 2 to the sum: [tex]\( 11 + 2 = 13 \)[/tex].
- So, the value of this expression is 13.

3. Expression: [tex]\( 6 + 5 \times 2 \)[/tex]
- First, perform the multiplication: [tex]\( 5 \times 2 = 10 \)[/tex].
- Then, add 6 to the product: [tex]\( 6 + 10 = 16 \)[/tex].
- So, the value of this expression is 16.

4. Expression: [tex]\( 6 \times (5 + 2) \)[/tex]
- First, evaluate the parentheses: [tex]\( 5 + 2 = 7 \)[/tex].
- Then, multiply 6 by the result: [tex]\( 6 \times 7 = 42 \)[/tex].
- So, the value of this expression is 42.

Now, let's summarize the results:
- The value of [tex]\( 6 \times 5 + 2 \)[/tex] is 32.
- The value of [tex]\( 6 + 5 + 2 \)[/tex] is 13.
- The value of [tex]\( 6 + 5 \times 2 \)[/tex] is 16.
- The value of [tex]\( 6 \times (5 + 2) \)[/tex] is 42.

Comparing these results, the expression that is equivalent to [tex]\( 6 \times 5 + 2 \)[/tex] is [tex]\( 6 \times 5 + 2 \)[/tex] itself, as both have a value of 32.