Answer :

To compute the integral [tex]\(\int \frac{x \, dx}{x^2 + 4x - 12}\)[/tex], let us go through the steps:

1. Factoring the Denominator:
First, we factor the quadratic expression in the denominator [tex]\(x^2 + 4x - 12\)[/tex].

We look for two numbers that multiply to [tex]\(-12\)[/tex] (the constant term) and add to [tex]\(4\)[/tex] (the coefficient of [tex]\(x\)[/tex]). Those numbers are [tex]\(6\)[/tex] and [tex]\(-2\)[/tex]. Thus,

[tex]\[ x^2 + 4x - 12 = (x + 6)(x - 2) \][/tex]

2. Substitute the Factored Denominator:
We rewrite the integral with the factored denominator:

[tex]\[ \int \frac{x \, dx}{(x + 6)(x - 2)} \][/tex]

3. Partial Fraction Decomposition:
We decompose the integrand into partial fractions. Assume:

[tex]\[ \frac{x}{(x + 6)(x - 2)} = \frac{A}{x + 6} + \frac{B}{x - 2} \][/tex]

To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we multiply both sides by [tex]\((x + 6)(x - 2)\)[/tex]:

[tex]\[ x = A(x - 2) + B(x + 6) \][/tex]

We obtain the equation by equating coefficients:

[tex]\[ x = Ax - 2A + Bx + 6B \][/tex]

Combining like terms:

[tex]\[ x = (A + B)x + (-2A + 6B) \][/tex]

Equating coefficients of [tex]\(x\)[/tex] and the constant term, we get:

- Coefficient of [tex]\(x\)[/tex]: [tex]\(A + B = 1\)[/tex]
- Constant term: [tex]\( -2A + 6B = 0\)[/tex]

Solving this system of equations:

[tex]\[ A + B = 1 \quad \text{(i)} \][/tex]
[tex]\[ -2A + 6B = 0 \quad \text{(ii)} \][/tex]

From (ii):

[tex]\[ -2A + 6B = 0 \implies B = \frac{A}{3} \][/tex]

Substitute [tex]\(B = \frac{A}{3}\)[/tex] into (i):

[tex]\[ A + \frac{A}{3} = 1 \implies \frac{3A + A}{3} = 1 \implies \frac{4A}{3} = 1 \implies 4A = 3 \implies A = \frac{3}{4} \][/tex]

Thus,

[tex]\[ B = \frac{A}{3} = \frac{3/4}{3} = \frac{1}{4} \][/tex]

Hence, we decompose the fraction:

[tex]\[ \frac{x}{(x + 6)(x - 2)} = \frac{3/4}{x + 6} + \frac{1/4}{x - 2} \][/tex]

4. Integrating Each Term:
Now, we integrate each partial fraction term separately:

[tex]\[ \int \frac{x \, dx}{(x + 6)(x - 2)} = \int \left( \frac{3/4}{x + 6} + \frac{1/4}{x - 2} \right) dx \][/tex]

This becomes:

[tex]\[ \int \frac{3/4}{x + 6} \, dx + \int \frac{1/4}{x - 2} \, dx \][/tex]

Using the integral formula [tex]\(\int \frac{1}{u} \, du = \ln|u|\)[/tex], these integrals evaluate to:

[tex]\[ \frac{3}{4} \int \frac{1}{x + 6} \, dx + \frac{1}{4} \int \frac{1}{x - 2} \, dx \][/tex]

[tex]\[ = \frac{3}{4} \ln|x + 6| + \frac{1}{4} \ln|x - 2| + C \][/tex]

Combining the logarithms:

[tex]\[ = \frac{1}{4} \ln|x - 2| + \frac{3}{4} \ln|x + 6| + C \][/tex]

Thus, the integral [tex]\(\int \frac{x \, dx}{x^2 + 4x - 12}\)[/tex] is:

[tex]\[ \boxed{\frac{1}{4} \ln|x - 2| + \frac{3}{4} \ln|x + 6| + C} \][/tex]