Statistics - Summer 2024
Question 8, 7.3.16-T
HW Score: [tex]$54\%$[/tex], 5.4 of 10 points
Save [tex]$\square$[/tex]
7.3 Homework
Part 1 of 3
Points: 0 of 1

The values listed below are waiting times (in minutes) of customers at two different banks. At Bank A, customers enter a single waiting line that feeds three teller windows. At Bank B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following question.
Click the icon to view the table of Chi-Square critical values.

Construct a [tex]$90\%$[/tex] confidence interval for the population standard deviation [tex]$\sigma$[/tex] at Bank [tex]$A$[/tex].
[tex]$\square \leq \sigma_{\text{Bank A}} \leq \square$[/tex]
(Round to two decimal places as needed.)



Answer :

To construct a [tex]$90\%$[/tex] confidence interval for the population standard deviation [tex]\(\sigma\)[/tex] at Bank A, we can follow these steps:

### Step 1: Calculate the Sample Standard Deviation
First, we need to find the sample standard deviation of the waiting times at Bank A. The sample waiting times are:
[tex]\[ 5.7, 8.9, 2.6, 9.0, 6.9, 9.6, 2.5, 9.2, 7.3, 12.0 \][/tex]

From these values, the sample standard deviation ([tex]\(s\)[/tex]) is:
[tex]\[ s = 3.06 \][/tex]

### Step 2: Determine the Degrees of Freedom
The degrees of freedom ([tex]\(df\)[/tex]) for the sample are calculated as the sample size minus one. If our sample size ([tex]\(n\)[/tex]) is 10, then:
[tex]\[ df = n - 1 = 10 - 1 = 9 \][/tex]

### Step 3: Find the Chi-Square Critical Values
For a [tex]$90\%$[/tex] confidence interval, we split the significance level ([tex]\(\alpha = 0.10\)[/tex]) into two tails, so [tex]\(\alpha/2 = 0.05\)[/tex]. We need the critical values for [tex]\(\chi^2\)[/tex] distribution with [tex]\(df = 9\)[/tex]:

- Lower critical value ([tex]\(\chi^2_{lower}\)[/tex]) at [tex]\(0.05\)[/tex] significance level:
[tex]\[ \chi^2_{0.05, 9} = 3.33 \][/tex]

- Upper critical value ([tex]\(\chi^2_{upper}\)[/tex]) at [tex]\(0.95\)[/tex] significance level:
[tex]\[ \chi^2_{0.95, 9} = 16.92 \][/tex]

### Step 4: Calculate the Confidence Interval for the Population Standard Deviation
Using the critical values and the sample standard deviation, we calculate the confidence interval for the population standard deviation ([tex]\(\sigma\)[/tex]) using the following formulas:
[tex]\[ \sigma_{lower} = \sqrt{\left(\frac{(n-1) \cdot s^2}{\chi^2_{upper}}\right)} \][/tex]
[tex]\[ \sigma_{upper} = \sqrt{\left(\frac{(n-1) \cdot s^2}{\chi^2_{lower}}\right)} \][/tex]

Given:
- [tex]\( s = 3.06 \)[/tex]
- [tex]\(\chi^2_{lower} = 3.33\)[/tex]
- [tex]\(\chi^2_{upper} = 16.92\)[/tex]
- [tex]\( df = 9\)[/tex]

### Step 5: Perform the Calculations
[tex]\[ \sigma_{lower} = \sqrt{\left(\frac{9 \cdot (3.06)^2}{16.92}\right)} = 2.23 \][/tex]

[tex]\[ \sigma_{upper} = \sqrt{\left(\frac{9 \cdot (3.06)^2}{3.33}\right)} = 5.03 \][/tex]

### Conclusion
Hence, the [tex]$90\%$[/tex] confidence interval for the population standard deviation [tex]\(\sigma\)[/tex] at Bank A is:
[tex]\[ 2.23 < \sigma < 5.03 \][/tex]

Rounded to two decimal places, the confidence interval is:
[tex]\[ 2.23 \text{ min} < \sigma < 5.03 \text{ min} \][/tex]