\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Population Data } \\
\hline 2 & 5 & 10 & 2 \\
\hline 4 & & 5 & \\
\hline 8 & 1 & 4 & 3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample Data } \\
\hline 4 & 1 & 5 & 3 \\
\hline
\end{tabular}

The difference between the mean of the sample and the mean of the population is [tex]$\square$[/tex]. The mean of the sample is [tex]$\square$[/tex].



Answer :

Absolutely. Let's go through the calculations step by step.

1. Mean of the Sample:

The sample data provided is:
[tex]\[ \begin{array}{|c|c|c|c|} \hline 4 & 1 & 5 & 3 \\ \hline \end{array} \][/tex]

To calculate the mean of the sample data:
[tex]\[ \text{Sample Mean} = \frac{ \sum \text{Sample Values} }{ \text{Number of Sample Values} } \][/tex]

Adding the values:
[tex]\[ 4 + 1 + 5 + 3 = 13 \][/tex]

Dividing by the number of values (which is 4):
[tex]\[ \text{Sample Mean} = \frac{13}{4} = 3.25 \][/tex]

2. Mean of the Population:

The population data provided is:
[tex]\[ \begin{array}{|c|c|c|c|} \hline 2 & 5 & 10 & 2 \\ \hline 4 & \text{None} & 5 & \text{None} \\ \hline 8 & 1 & 4 & 3 \\ \hline \end{array} \][/tex]

First, we ignore the `None` values and gather all the numerical values:

[tex]\[ \{2, 5, 10, 2, 4, 5, 8, 1, 4, 3\} \][/tex]

Adding the population values:
[tex]\[ 2 + 5 + 10 + 2 + 4 + 5 + 8 + 1 + 4 + 3 = 44 \][/tex]

Counting the number of values (which is 10):
[tex]\[ \text{Population Mean} = \frac{44}{10} = 4.4 \][/tex]

3. Difference between the Mean of the Sample and the Population:

The difference is calculated as follows:
[tex]\[ \text{Mean Difference} = \text{Sample Mean} - \text{Population Mean} \][/tex]

Substituting the values we found:
[tex]\[ \text{Mean Difference} = 3.25 - 4.4 = -1.15 \][/tex]

Thus, the mean of the sample is [tex]\(3.25\)[/tex], the mean of the population is [tex]\(4.4\)[/tex], and the difference between the sample mean and the population mean is [tex]\(-1.15\)[/tex].