Assignment - 2: Variables and Expressions

Match the meaning of each of the following expressions:

1. [tex]\(x\)[/tex] added to the sum of five and seven
2. the sum of eight and two, subtracted from [tex]\(x\)[/tex]
3. eight added to [tex]\(x\)[/tex]
4. eight subtracted from [tex]\(x\)[/tex]
5. eight minus [tex]\(x\)[/tex]
6. five subtracted from [tex]\(n\)[/tex]
7. the sum of [tex]\(x\)[/tex] and itself
8. the difference of eight and two, added to [tex]\(x\)[/tex]
9. the sum of [tex]\(n\)[/tex] and five
10. five minus [tex]\(n\)[/tex]

Match the expressions to the following:

A. [tex]\(n + 5\)[/tex]
B. [tex]\(x + 8\)[/tex]
C. [tex]\(x + (8 - 2)\)[/tex]
D. [tex]\(5 - n\)[/tex]
E. [tex]\(n - 5\)[/tex]
F. [tex]\(x + x\)[/tex]
G. [tex]\(8 - x\)[/tex]
H. [tex]\(x + (5 + 7)\)[/tex]
I. [tex]\(x - (8 + 2)\)[/tex]
J. [tex]\(x - 8\)[/tex]



Answer :

Sure! Let's match each expression with its corresponding description from the list step-by-step:

1. [tex]$x$[/tex] added to the sum of five and seven:
- The sum of five and seven is calculated first, which gives [tex]\(5 + 7\)[/tex].
- Adding [tex]\(x\)[/tex] to this sum: [tex]\(x + (5 + 7)\)[/tex].
- So the expression is [tex]\(x + (5 + 7)\)[/tex].

2. The sum of eight and two, subtracted from [tex]$x$[/tex]:
- The sum of eight and two is calculated first, which gives [tex]\(8 + 2\)[/tex].
- Subtracting this sum from [tex]\(x\)[/tex]: [tex]\(x - (8 + 2)\)[/tex].
- So the expression is [tex]\(x - (8 + 2)\)[/tex].

3. Eight added to [tex]$x$[/tex]:
- Simply adding eight to [tex]\(x\)[/tex]: [tex]\(x + 8\)[/tex].
- So the expression is [tex]\(x + 8\)[/tex].

4. Eight subtracted from [tex]$x$[/tex]:
- Simply subtracting eight from [tex]\(x\)[/tex]: [tex]\(x - 8\)[/tex].
- So the expression is [tex]\(x - 8\)[/tex].

5. Eight minus [tex]$x$[/tex]:
- Simply subtracting [tex]\(x\)[/tex] from eight: [tex]\(8 - x\)[/tex].
- So the expression is [tex]\(8 - x\)[/tex].

6. Five subtracted from [tex]$n$[/tex]:
- Simply subtracting five from [tex]\(n\)[/tex]: [tex]\(n - 5\)[/tex].
- So the expression is [tex]\(n - 5\)[/tex].

7. The sum of [tex]$x$[/tex] and itself:
- Adding [tex]\(x\)[/tex] to itself: [tex]\(x + x\)[/tex].
- So the expression is [tex]\(x + x\)[/tex].

8. The difference of eight and two, added to [tex]$x$[/tex]:
- The difference of eight and two is calculated first, which gives [tex]\(8 - 2\)[/tex].
- Adding this difference to [tex]\(x\)[/tex]: [tex]\(x + (8 - 2)\)[/tex].
- So the expression is [tex]\(x + (8 - 2)\)[/tex].

9. The sum of [tex]$n$[/tex] and five:
- Simply adding five to [tex]\(n\)[/tex]: [tex]\(n + 5\)[/tex].
- So the expression is [tex]\(n + 5\)[/tex].

10. Five minus [tex]$n$[/tex]:
- Simply subtracting [tex]\(n\)[/tex] from five: [tex]\(5 - n\)[/tex].
- So the expression is [tex]\(5 - n\)[/tex].

Now, let's match each description to the corresponding expression:

1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]

So, the matched pairs are as follows:

1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]