Answer :
Sure! Let's match each expression with its corresponding description from the list step-by-step:
1. [tex]$x$[/tex] added to the sum of five and seven:
- The sum of five and seven is calculated first, which gives [tex]\(5 + 7\)[/tex].
- Adding [tex]\(x\)[/tex] to this sum: [tex]\(x + (5 + 7)\)[/tex].
- So the expression is [tex]\(x + (5 + 7)\)[/tex].
2. The sum of eight and two, subtracted from [tex]$x$[/tex]:
- The sum of eight and two is calculated first, which gives [tex]\(8 + 2\)[/tex].
- Subtracting this sum from [tex]\(x\)[/tex]: [tex]\(x - (8 + 2)\)[/tex].
- So the expression is [tex]\(x - (8 + 2)\)[/tex].
3. Eight added to [tex]$x$[/tex]:
- Simply adding eight to [tex]\(x\)[/tex]: [tex]\(x + 8\)[/tex].
- So the expression is [tex]\(x + 8\)[/tex].
4. Eight subtracted from [tex]$x$[/tex]:
- Simply subtracting eight from [tex]\(x\)[/tex]: [tex]\(x - 8\)[/tex].
- So the expression is [tex]\(x - 8\)[/tex].
5. Eight minus [tex]$x$[/tex]:
- Simply subtracting [tex]\(x\)[/tex] from eight: [tex]\(8 - x\)[/tex].
- So the expression is [tex]\(8 - x\)[/tex].
6. Five subtracted from [tex]$n$[/tex]:
- Simply subtracting five from [tex]\(n\)[/tex]: [tex]\(n - 5\)[/tex].
- So the expression is [tex]\(n - 5\)[/tex].
7. The sum of [tex]$x$[/tex] and itself:
- Adding [tex]\(x\)[/tex] to itself: [tex]\(x + x\)[/tex].
- So the expression is [tex]\(x + x\)[/tex].
8. The difference of eight and two, added to [tex]$x$[/tex]:
- The difference of eight and two is calculated first, which gives [tex]\(8 - 2\)[/tex].
- Adding this difference to [tex]\(x\)[/tex]: [tex]\(x + (8 - 2)\)[/tex].
- So the expression is [tex]\(x + (8 - 2)\)[/tex].
9. The sum of [tex]$n$[/tex] and five:
- Simply adding five to [tex]\(n\)[/tex]: [tex]\(n + 5\)[/tex].
- So the expression is [tex]\(n + 5\)[/tex].
10. Five minus [tex]$n$[/tex]:
- Simply subtracting [tex]\(n\)[/tex] from five: [tex]\(5 - n\)[/tex].
- So the expression is [tex]\(5 - n\)[/tex].
Now, let's match each description to the corresponding expression:
1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]
So, the matched pairs are as follows:
1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]
1. [tex]$x$[/tex] added to the sum of five and seven:
- The sum of five and seven is calculated first, which gives [tex]\(5 + 7\)[/tex].
- Adding [tex]\(x\)[/tex] to this sum: [tex]\(x + (5 + 7)\)[/tex].
- So the expression is [tex]\(x + (5 + 7)\)[/tex].
2. The sum of eight and two, subtracted from [tex]$x$[/tex]:
- The sum of eight and two is calculated first, which gives [tex]\(8 + 2\)[/tex].
- Subtracting this sum from [tex]\(x\)[/tex]: [tex]\(x - (8 + 2)\)[/tex].
- So the expression is [tex]\(x - (8 + 2)\)[/tex].
3. Eight added to [tex]$x$[/tex]:
- Simply adding eight to [tex]\(x\)[/tex]: [tex]\(x + 8\)[/tex].
- So the expression is [tex]\(x + 8\)[/tex].
4. Eight subtracted from [tex]$x$[/tex]:
- Simply subtracting eight from [tex]\(x\)[/tex]: [tex]\(x - 8\)[/tex].
- So the expression is [tex]\(x - 8\)[/tex].
5. Eight minus [tex]$x$[/tex]:
- Simply subtracting [tex]\(x\)[/tex] from eight: [tex]\(8 - x\)[/tex].
- So the expression is [tex]\(8 - x\)[/tex].
6. Five subtracted from [tex]$n$[/tex]:
- Simply subtracting five from [tex]\(n\)[/tex]: [tex]\(n - 5\)[/tex].
- So the expression is [tex]\(n - 5\)[/tex].
7. The sum of [tex]$x$[/tex] and itself:
- Adding [tex]\(x\)[/tex] to itself: [tex]\(x + x\)[/tex].
- So the expression is [tex]\(x + x\)[/tex].
8. The difference of eight and two, added to [tex]$x$[/tex]:
- The difference of eight and two is calculated first, which gives [tex]\(8 - 2\)[/tex].
- Adding this difference to [tex]\(x\)[/tex]: [tex]\(x + (8 - 2)\)[/tex].
- So the expression is [tex]\(x + (8 - 2)\)[/tex].
9. The sum of [tex]$n$[/tex] and five:
- Simply adding five to [tex]\(n\)[/tex]: [tex]\(n + 5\)[/tex].
- So the expression is [tex]\(n + 5\)[/tex].
10. Five minus [tex]$n$[/tex]:
- Simply subtracting [tex]\(n\)[/tex] from five: [tex]\(5 - n\)[/tex].
- So the expression is [tex]\(5 - n\)[/tex].
Now, let's match each description to the corresponding expression:
1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]
So, the matched pairs are as follows:
1. [tex]\(x + (5 + 7)\)[/tex]
2. [tex]\(x - (8 + 2)\)[/tex]
3. [tex]\(x + 8\)[/tex]
4. [tex]\(x - 8\)[/tex]
5. [tex]\(8 - x\)[/tex]
6. [tex]\(n - 5\)[/tex]
7. [tex]\(x + x\)[/tex]
8. [tex]\(x + (8 - 2)\)[/tex]
9. [tex]\(n + 5\)[/tex]
10. [tex]\(5 - n\)[/tex]