Answer :

Let's solve the equation [tex]\(27x = \frac{9}{3x}\)[/tex] step-by-step.

1. Start with the given equation:
[tex]\[ 27x = \frac{9}{3x} \][/tex]

2. Clear the fraction by multiplying both sides of the equation by [tex]\(3x\)[/tex]:
[tex]\[ 27x \cdot 3x = \frac{9}{3x} \cdot 3x \][/tex]

3. Simplify both sides:
[tex]\[ 81x^2 = 9 \][/tex]

4. Divide both sides by 9 to isolate the [tex]\(x^2\)[/tex] term:
[tex]\[ 81x^2 \div 9 = 9 \div 9 \][/tex]
[tex]\[ 9x2 = 1 \][/tex]

5. Divide both sides by 9 to further simplify:
[tex]\[ x^2 = \frac{1}{9} \][/tex]

6. Take the square root of both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \pm \sqrt{\frac{1}{9}} \][/tex]

7. Simplify the square root:
[tex]\[ x = \pm \frac{1}{3} \][/tex]

So, the solutions to the equation [tex]\(27x = \frac{9}{3x}\)[/tex] are [tex]\(x = \frac{1}{3}\)[/tex] and [tex]\(x = -\frac{1}{3}\)[/tex].

### Conclusion

The correct solutions are:
[tex]\[ x = \frac{1}{3} \quad \text{and} \quad x = -\frac{1}{3} \][/tex]

These are neither [tex]\(0\)[/tex] nor [tex]\(\frac{1}{2}\)[/tex], so the options given (a) and (b) are incorrect.