Answer :
To determine the values of [tex]\(k\)[/tex] for which the quadratic equation
[tex]\[ (k+4)z^2 + 7z - 8 = 0 \][/tex]
has two real solutions, we need to analyze the discriminant of the equation. Recall that a quadratic equation [tex]\(az^2 + bz + c = 0\)[/tex] will have two distinct real solutions if its discriminant [tex]\(\Delta\)[/tex] is greater than zero. The discriminant for a quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our equation, the coefficients are:
- [tex]\(a = k + 4\)[/tex]
- [tex]\(b = 7\)[/tex]
- [tex]\(c = -8\)[/tex]
Thus, the discriminant [tex]\(\Delta\)[/tex] for our quadratic equation is:
[tex]\[ \Delta = 7^2 - 4(k+4)(-8) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = 49 - 4(k+4)(-8) \][/tex]
[tex]\[ \Delta = 49 + 32(k + 4) \][/tex]
[tex]\[ \Delta = 49 + 32k + 128 \][/tex]
[tex]\[ \Delta = 32k + 177 \][/tex]
For the quadratic equation to have two distinct real solutions, we need the discriminant to be greater than zero:
[tex]\[ 32k + 177 > 0 \][/tex]
Solving this inequality for [tex]\(k\)[/tex], we get:
[tex]\[ 32k > -177 \][/tex]
[tex]\[ k > -\frac{177}{32} \][/tex]
Hence, the values of [tex]\(k\)[/tex] for which the given quadratic equation has two real solutions are:
[tex]\[ k > -\frac{177}{32} \][/tex]
This can also be written as:
[tex]\[ k > -5.53125 \][/tex]
This means [tex]\(k\)[/tex] should be greater than [tex]\(-\frac{177}{32}\)[/tex]. This interval of solutions is:
[tex]\[ k \in \left( -\frac{177}{32}, \infty \right) \][/tex]
[tex]\[ (k+4)z^2 + 7z - 8 = 0 \][/tex]
has two real solutions, we need to analyze the discriminant of the equation. Recall that a quadratic equation [tex]\(az^2 + bz + c = 0\)[/tex] will have two distinct real solutions if its discriminant [tex]\(\Delta\)[/tex] is greater than zero. The discriminant for a quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our equation, the coefficients are:
- [tex]\(a = k + 4\)[/tex]
- [tex]\(b = 7\)[/tex]
- [tex]\(c = -8\)[/tex]
Thus, the discriminant [tex]\(\Delta\)[/tex] for our quadratic equation is:
[tex]\[ \Delta = 7^2 - 4(k+4)(-8) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = 49 - 4(k+4)(-8) \][/tex]
[tex]\[ \Delta = 49 + 32(k + 4) \][/tex]
[tex]\[ \Delta = 49 + 32k + 128 \][/tex]
[tex]\[ \Delta = 32k + 177 \][/tex]
For the quadratic equation to have two distinct real solutions, we need the discriminant to be greater than zero:
[tex]\[ 32k + 177 > 0 \][/tex]
Solving this inequality for [tex]\(k\)[/tex], we get:
[tex]\[ 32k > -177 \][/tex]
[tex]\[ k > -\frac{177}{32} \][/tex]
Hence, the values of [tex]\(k\)[/tex] for which the given quadratic equation has two real solutions are:
[tex]\[ k > -\frac{177}{32} \][/tex]
This can also be written as:
[tex]\[ k > -5.53125 \][/tex]
This means [tex]\(k\)[/tex] should be greater than [tex]\(-\frac{177}{32}\)[/tex]. This interval of solutions is:
[tex]\[ k \in \left( -\frac{177}{32}, \infty \right) \][/tex]