Answer :
Certainly! Let's break down the problem step by step to find out which object has a weight of about 22.5 N.
### Step 1: Calculate the Gravitational Acceleration
The gravitational acceleration (g) is given as [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
### Step 2: Identify the Masses of the Objects
From the table provided:
- Mass of the Book: [tex]\( 1.1 \, \text{kg} \)[/tex]
- Mass of the Rock: [tex]\( 2.3 \, \text{kg} \)[/tex]
- Mass of the Box: [tex]\( 4.5 \, \text{kg} \)[/tex]
- Mass of the Fish: [tex]\( 5.8 \, \text{kg} \)[/tex]
### Step 3: Calculate the Weight of Each Object
Weight can be calculated using the formula:
[tex]\[ \text{Weight} = \text{Mass} \times \text{Gravitational Acceleration} \][/tex]
- Weight of the Book:
[tex]\[ \text{Weight} = 1.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 10.78 \, \text{N} \][/tex]
- Weight of the Rock:
[tex]\[ \text{Weight} = 2.3 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 22.54 \, \text{N} \][/tex]
- Weight of the Box:
[tex]\[ \text{Weight} = 4.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 44.1 \, \text{N} \][/tex]
- Weight of the Fish:
[tex]\[ \text{Weight} = 5.8 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 56.84 \, \text{N} \][/tex]
### Step 4: Compare the Weights to the Target Weight
We are looking for the object that has a weight of about [tex]\( 22.5 \, \text{N} \)[/tex].
- Book: [tex]\( 10.78 \, \text{N} \)[/tex]
- Rock: [tex]\( 22.54 \, \text{N} \)[/tex]
- Box: [tex]\( 44.1 \, \text{N} \)[/tex]
- Fish: [tex]\( 56.84 \, \text{N} \)[/tex]
### Step 5: Identify the Object Closest to 22.5 N
The rock has a weight of [tex]\( 22.54 \, \text{N} \)[/tex], which is the closest to [tex]\( 22.5 \, \text{N} \)[/tex].
### Conclusion
Therefore, the object with a weight of about [tex]\( 22.5 \, \text{N} \)[/tex] is the rock.
### Step 1: Calculate the Gravitational Acceleration
The gravitational acceleration (g) is given as [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
### Step 2: Identify the Masses of the Objects
From the table provided:
- Mass of the Book: [tex]\( 1.1 \, \text{kg} \)[/tex]
- Mass of the Rock: [tex]\( 2.3 \, \text{kg} \)[/tex]
- Mass of the Box: [tex]\( 4.5 \, \text{kg} \)[/tex]
- Mass of the Fish: [tex]\( 5.8 \, \text{kg} \)[/tex]
### Step 3: Calculate the Weight of Each Object
Weight can be calculated using the formula:
[tex]\[ \text{Weight} = \text{Mass} \times \text{Gravitational Acceleration} \][/tex]
- Weight of the Book:
[tex]\[ \text{Weight} = 1.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 10.78 \, \text{N} \][/tex]
- Weight of the Rock:
[tex]\[ \text{Weight} = 2.3 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 22.54 \, \text{N} \][/tex]
- Weight of the Box:
[tex]\[ \text{Weight} = 4.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 44.1 \, \text{N} \][/tex]
- Weight of the Fish:
[tex]\[ \text{Weight} = 5.8 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 56.84 \, \text{N} \][/tex]
### Step 4: Compare the Weights to the Target Weight
We are looking for the object that has a weight of about [tex]\( 22.5 \, \text{N} \)[/tex].
- Book: [tex]\( 10.78 \, \text{N} \)[/tex]
- Rock: [tex]\( 22.54 \, \text{N} \)[/tex]
- Box: [tex]\( 44.1 \, \text{N} \)[/tex]
- Fish: [tex]\( 56.84 \, \text{N} \)[/tex]
### Step 5: Identify the Object Closest to 22.5 N
The rock has a weight of [tex]\( 22.54 \, \text{N} \)[/tex], which is the closest to [tex]\( 22.5 \, \text{N} \)[/tex].
### Conclusion
Therefore, the object with a weight of about [tex]\( 22.5 \, \text{N} \)[/tex] is the rock.