Answer :
To find the number from which subtracting [tex]\(\frac{3}{4}\)[/tex] yields [tex]\(\frac{1}{2}\)[/tex], follow these steps:
1. Let [tex]\(x\)[/tex] be the number we are looking for.
2. Write down the equation based on the problem statement:
[tex]\[ x - \frac{3}{4} = \frac{1}{2} \][/tex]
3. To isolate [tex]\(x\)[/tex], add [tex]\(\frac{3}{4}\)[/tex] to both sides of the equation:
[tex]\[ x = \frac{1}{2} + \frac{3}{4} \][/tex]
4. To perform the addition, we need to convert the fractions to have a common denominator.
- The common denominator for 2 and 4 is 4.
- Convert [tex]\(\frac{1}{2}\)[/tex] to a fraction with a denominator of 4:
[tex]\[ \frac{1}{2} = \frac{1 \times 2}{2 \times 2} = \frac{2}{4} \][/tex]
- [tex]\(\frac{3}{4}\)[/tex] already has the denominator 4, so it remains [tex]\(\frac{3}{4}\)[/tex].
5. Add the fractions [tex]\(\frac{2}{4}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{2}{4} + \frac{3}{4} = \frac{2 + 3}{4} = \frac{5}{4} \][/tex]
6. Thus, the number [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{5}{4} \][/tex]
7. Convert [tex]\(\frac{5}{4}\)[/tex] to a decimal to double-check:
[tex]\[ \frac{5}{4} = 1.25 \][/tex]
Therefore, the number we are looking for is [tex]\( \boxed{1.25} \)[/tex] or [tex]\( \frac{5}{4} \)[/tex].
1. Let [tex]\(x\)[/tex] be the number we are looking for.
2. Write down the equation based on the problem statement:
[tex]\[ x - \frac{3}{4} = \frac{1}{2} \][/tex]
3. To isolate [tex]\(x\)[/tex], add [tex]\(\frac{3}{4}\)[/tex] to both sides of the equation:
[tex]\[ x = \frac{1}{2} + \frac{3}{4} \][/tex]
4. To perform the addition, we need to convert the fractions to have a common denominator.
- The common denominator for 2 and 4 is 4.
- Convert [tex]\(\frac{1}{2}\)[/tex] to a fraction with a denominator of 4:
[tex]\[ \frac{1}{2} = \frac{1 \times 2}{2 \times 2} = \frac{2}{4} \][/tex]
- [tex]\(\frac{3}{4}\)[/tex] already has the denominator 4, so it remains [tex]\(\frac{3}{4}\)[/tex].
5. Add the fractions [tex]\(\frac{2}{4}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{2}{4} + \frac{3}{4} = \frac{2 + 3}{4} = \frac{5}{4} \][/tex]
6. Thus, the number [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{5}{4} \][/tex]
7. Convert [tex]\(\frac{5}{4}\)[/tex] to a decimal to double-check:
[tex]\[ \frac{5}{4} = 1.25 \][/tex]
Therefore, the number we are looking for is [tex]\( \boxed{1.25} \)[/tex] or [tex]\( \frac{5}{4} \)[/tex].