To determine the frequency of the light wave, we can use the formula that relates the speed of light ([tex]\(c\)[/tex]), the wavelength ([tex]\(\lambda\)[/tex]), and the frequency ([tex]\(f\)[/tex]):
[tex]\[
f = \frac{c}{\lambda}
\][/tex]
Given:
- The speed of light ([tex]\(c\)[/tex]) is [tex]\(3.0 \times 10^8\)[/tex] meters/second.
- The wavelength ([tex]\(\lambda\)[/tex]) is [tex]\(7.0 \times 10^{-7}\)[/tex] meters.
Let's plug these values into the formula:
[tex]\[
f = \frac{3.0 \times 10^8 \text{ meters/second}}{7.0 \times 10^{-7} \text{ meters}}
\][/tex]
When you divide these numbers, you get:
[tex]\[
f \approx 428571428571428.56 \text{ hertz}
\][/tex]
In scientific notation, this value is approximately:
[tex]\[
4.3 \times 10^{14} \text{ hertz}
\][/tex]
Therefore, the correct answer is:
B. [tex]\(4.3 \times 10^{14}\)[/tex] hertz