Select the correct answer.

A light wave travels at a speed of [tex]$3.0 \times 10^8$[/tex] meters/second. If the wavelength is [tex]$7.0 \times 10^{-7}$[/tex] meters, what is the frequency of the wave?

A. [tex][tex]$25 \times 10^{-14}$[/tex][/tex] hertz
B. [tex]$4.3 \times 10^{14}$[/tex] hertz
C. [tex]$1.7 \times 10^{-14}$[/tex] hertz
D. [tex][tex]$5.1 \times 10^{-14}$[/tex][/tex] hertz



Answer :

To determine the frequency of the light wave, we can use the formula that relates the speed of light ([tex]\(c\)[/tex]), the wavelength ([tex]\(\lambda\)[/tex]), and the frequency ([tex]\(f\)[/tex]):

[tex]\[ f = \frac{c}{\lambda} \][/tex]

Given:
- The speed of light ([tex]\(c\)[/tex]) is [tex]\(3.0 \times 10^8\)[/tex] meters/second.
- The wavelength ([tex]\(\lambda\)[/tex]) is [tex]\(7.0 \times 10^{-7}\)[/tex] meters.

Let's plug these values into the formula:

[tex]\[ f = \frac{3.0 \times 10^8 \text{ meters/second}}{7.0 \times 10^{-7} \text{ meters}} \][/tex]

When you divide these numbers, you get:

[tex]\[ f \approx 428571428571428.56 \text{ hertz} \][/tex]

In scientific notation, this value is approximately:

[tex]\[ 4.3 \times 10^{14} \text{ hertz} \][/tex]

Therefore, the correct answer is:

B. [tex]\(4.3 \times 10^{14}\)[/tex] hertz