Let's find the wavelength of a radio wave given its frequency and speed. We'll use the formula that relates wavelength ([tex]\(\lambda\)[/tex]), speed (v), and frequency (f). The formula is:
[tex]\[ \lambda = \frac{v}{f} \][/tex]
Here are the given values:
- Frequency ([tex]\(f\)[/tex]) = [tex]\(5.5 \times 10^4\)[/tex] hertz
- Speed ([tex]\(v\)[/tex]) = [tex]\(3.0 \times 10^8\)[/tex] meters/second
Plugging in these values into the formula:
[tex]\[ \lambda = \frac{3.0 \times 10^8 \, \text{m/s}}{5.5 \times 10^4 \, \text{Hz}} \][/tex]
Performing the division:
[tex]\[ \lambda = \frac{3.0 \times 10^8}{5.5 \times 10^4} \approx 5454.545454545455 \, \text{meters} \][/tex]
When you round this to 4 significant figures, [tex]\( \lambda \approx 5455 \, \text{meters} \)[/tex]
Based on the given choices, the closest correct answer is:
B. [tex]$5.0 \times 10^3$[/tex] meters