An exponential function [tex]$f(x)=a b^x$[/tex] passes through the points [tex]$(0,7000)$[/tex] and [tex][tex]$(3,7)$[/tex][/tex]. What are the values of [tex]a[/tex] and [tex]b[/tex]?

[tex]\[
\begin{array}{l}
a= \\
b=
\end{array}
\][/tex]



Answer :

To find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] for the exponential function [tex]\( f(x) = a b^x \)[/tex] that passes through the points [tex]\((0, 7000)\)[/tex] and [tex]\((3, 7)\)[/tex], follow these steps:

1. Determine [tex]\( a \)[/tex] using the first point [tex]\((0, 7000)\)[/tex]:
The function [tex]\( f(x) = a b^x \)[/tex] should satisfy [tex]\( f(0) = 7000 \)[/tex].

Substitute [tex]\( x = 0 \)[/tex] and [tex]\( f(0) = 7000 \)[/tex] into the function:
[tex]\[ 7000 = a b^0 \][/tex]

Since [tex]\( b^0 = 1 \)[/tex], this simplifies to:
[tex]\[ 7000 = a \cdot 1 \implies a = 7000 \][/tex]

2. Determine [tex]\( b \)[/tex] using the second point [tex]\((3, 7)\)[/tex]:
Now use the second point to find [tex]\( b \)[/tex]. Substitute [tex]\( x = 3 \)[/tex] and [tex]\( f(3) = 7 \)[/tex] into the function:
[tex]\[ 7 = 7000 \cdot b^3 \][/tex]

We need to solve for [tex]\( b \)[/tex]. Start by isolating [tex]\( b^3 \)[/tex]:
[tex]\[ b^3 = \frac{7}{7000} \][/tex]

Simplify the fraction:
[tex]\[ b^3 = \frac{1}{1000} \][/tex]

Now, take the cube root of both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \left(\frac{1}{1000}\right)^{\frac{1}{3}} \][/tex]

Simplifying the cube root:
[tex]\[ b = 0.1 \][/tex]

So, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are:
[tex]\[ \begin{array}{l} a = 7000 \\ b = 0.1 \end{array} \][/tex]