Simplify [tex]3j - \{2k - [5h - (3j + k)]\}[/tex].

A. [tex]3h - 5k[/tex]
B. [tex]-3h - 5k[/tex]
C. [tex]5h - 3k[/tex]
D. [tex]-5h - 3k[/tex]



Answer :

Let's simplify the expression step by step:

Given expression:
[tex]\[ 3j - \{2k - [5h - (3j + k)]\} \][/tex]

First, resolve the innermost brackets:
[tex]\[ 5h - (3j + k) \][/tex]

This simplifies to:
[tex]\[ 5h - 3j - k \][/tex]

Now, substitute this result back into the expression within the second set of brackets:
[tex]\[ 3j - \{2k - (5h - 3j - k)\} \][/tex]

Next, distribute the negative sign in front of the parentheses:
[tex]\[ 2k - 5h + 3j + k \][/tex]

Combine like terms inside the braces:
[tex]\[ 2k + k + 3j - 5h = 3k + 3j - 5h \][/tex]

Now, substitute this result back into the original expression:
[tex]\[ 3j - (3k + 3j - 5h) \][/tex]

Distribute the negative sign in front of the parentheses:
[tex]\[ 3j - 3k - 3j + 5h \][/tex]

Combine like terms:
[tex]\[ 5h - 3k \][/tex]

Thus, the simplified expression is:
[tex]\[ 5h - 3k \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{5h - 3k} \][/tex]