Answer :
Sure, let's simplify the expression step by step:
1. Distribute the -4 across the terms inside the parentheses:
[tex]\[ -4(w + 3) \][/tex]
Multiply -4 by each term inside the parentheses:
[tex]\[ -4 \cdot w + (-4) \cdot 3 = -4w - 12 \][/tex]
2. Rewrite the original expression with the distributed terms:
[tex]\[ -4w - 12 + w \][/tex]
3. Combine like terms:
- The like terms here are [tex]\(-4w\)[/tex] and [tex]\(w\)[/tex].
- Combining them gives:
[tex]\[ -4w + w = -3w \][/tex]
4. Write the simplified expression with the remaining constant term:
[tex]\[ -3w - 12 \][/tex]
So, the simplified form of the expression [tex]\(-4(w + 3) + w\)[/tex] is:
[tex]\[ -3w - 12 \][/tex]
1. Distribute the -4 across the terms inside the parentheses:
[tex]\[ -4(w + 3) \][/tex]
Multiply -4 by each term inside the parentheses:
[tex]\[ -4 \cdot w + (-4) \cdot 3 = -4w - 12 \][/tex]
2. Rewrite the original expression with the distributed terms:
[tex]\[ -4w - 12 + w \][/tex]
3. Combine like terms:
- The like terms here are [tex]\(-4w\)[/tex] and [tex]\(w\)[/tex].
- Combining them gives:
[tex]\[ -4w + w = -3w \][/tex]
4. Write the simplified expression with the remaining constant term:
[tex]\[ -3w - 12 \][/tex]
So, the simplified form of the expression [tex]\(-4(w + 3) + w\)[/tex] is:
[tex]\[ -3w - 12 \][/tex]