Which expression is equivalent to [tex]\frac{60 x^{20} y^{24}}{30 x^{10} y^{12}}[/tex]?

A. [tex]2 x^2 y^2[/tex]
B. [tex]2 x^{10} y^{12}[/tex]
C. [tex]30 x^2 y^2[/tex]
D. [tex]30 x^{10} y^{12}[/tex]



Answer :

To simplify the expression [tex]\(\frac{60 x^{20} y^{24}}{30 x^{10} y^{12}} \)[/tex], follow these steps:

1. Simplify the coefficients:
- The coefficient in the numerator is [tex]\(60\)[/tex].
- The coefficient in the denominator is [tex]\(30\)[/tex].
- Divide the coefficients: [tex]\(\frac{60}{30} = 2\)[/tex].

2. Simplify the powers of [tex]\(x\)[/tex]:
- The power of [tex]\(x\)[/tex] in the numerator is [tex]\(20\)[/tex].
- The power of [tex]\(x\)[/tex] in the denominator is [tex]\(10\)[/tex].
- Subtract the powers: [tex]\(20 - 10 = 10\)[/tex].
- So, [tex]\(x^{20} / x^{10} = x^{10}\)[/tex].

3. Simplify the powers of [tex]\(y\)[/tex]:
- The power of [tex]\(y\)[/tex] in the numerator is [tex]\(24\)[/tex].
- The power of [tex]\(y\)[/tex] in the denominator is [tex]\(12\)[/tex].
- Subtract the powers: [tex]\(24 - 12 = 12\)[/tex].
- So, [tex]\(y^{24} / y^{12} = y^{12}\)[/tex].

Combining all these simplified parts, we get:

[tex]\[ \frac{60 x^{20} y^{24}}{30 x^{10} y^{12}} = 2 x^{10} y^{12} \][/tex]

Thus, the expression equivalent to [tex]\(\frac{60 x^{20} y^{24}}{30 x^{10} y^{12}} \)[/tex] is:

[tex]\[ 2 x^{10} y^{12} \][/tex]

The correct choice among the given options is [tex]\(2 x^{10} y^{12}\)[/tex].