Which expression is equivalent to [tex]\left(a^8\right)^4[/tex]?

A. [tex]a^2[/tex]
B. [tex]a^4[/tex]
C. [tex]a^{12}[/tex]
D. [tex]a^{32}[/tex]



Answer :

Sure, let's go through the solution step-by-step.

We start with the expression [tex]\(\left(a^8\right)^4\)[/tex].

To simplify this, we can utilize the properties of exponents, specifically the power of a power rule. The power of a power rule states that for any base [tex]\(a\)[/tex] and exponents [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:

[tex]\[ (a^m)^n = a^{m \cdot n} \][/tex]

In this case, our base is [tex]\(a\)[/tex], the first exponent (inside the parentheses) is [tex]\(8\)[/tex], and the second exponent (outside the parentheses) is [tex]\(4\)[/tex]. According to the rule:

[tex]\[ \left(a^8\right)^4 = a^{8 \cdot 4} \][/tex]

Next, we multiply the exponents:

[tex]\[ 8 \cdot 4 = 32 \][/tex]

Thus, we have:

[tex]\[ \left(a^8\right)^4 = a^{32} \][/tex]

Therefore, the expression [tex]\(\left(a^8\right)^4\)[/tex] is equivalent to [tex]\(a^{32}\)[/tex].

Among the given choices, the correct one is:

[tex]\[ a^{32} \][/tex]