Which expressions are equivalent to the one below? Check all that apply.

[tex]5^x[/tex]

A. [tex]\frac{15^x}{3^x}[/tex]
B. [tex]x^5[/tex]
C. [tex]5 \cdot 5^{x+1}[/tex]
D. [tex]\frac{15^x}{3}[/tex]
E. [tex]5 \cdot 5^{x-1}[/tex]
F. [tex]\left(\frac{15}{3}\right)^x[/tex]



Answer :

Alright, let's go through each given expression and check if it is equivalent to [tex]\(5^x\)[/tex].

### Expression A: [tex]\(\frac{15^x}{3^x}\)[/tex]

We can use properties of exponents to simplify this expression:
[tex]\[ \frac{15^x}{3^x} = \left(\frac{15}{3}\right)^x = 5^x \][/tex]
Thus, Expression A is equivalent to [tex]\(5^x\)[/tex].

### Expression B: [tex]\(x^5\)[/tex]

This expression does not resemble or have any properties of exponents that can directly simplify to [tex]\(5^x\)[/tex]:
[tex]\[ x^5 \neq 5^x \][/tex]
Thus, Expression B is not equivalent to [tex]\(5^x\)[/tex].

### Expression C: [tex]\(5 \cdot 5^{x+1}\)[/tex]

Let's simplify this expression using properties of exponents:
[tex]\[ 5 \cdot 5^{x+1} = 5^1 \cdot 5^{x+1} = 5^{1 + x + 1} = 5^{x+2} \][/tex]
Since [tex]\(5^{x+2} \neq 5^x\)[/tex], Expression C is not equivalent to [tex]\(5^x\)[/tex].

### Expression D: [tex]\(\frac{15^x}{3}\)[/tex]

This expression cannot be directly simplified to match [tex]\(5^x\)[/tex] because only the numerator is raised to the power [tex]\(x\)[/tex]:
[tex]\[ \frac{15^x}{3} \neq 5^x \][/tex]
Thus, Expression D is not equivalent to [tex]\(5^x\)[/tex].

### Expression E: [tex]\(5 \cdot 5^{x-1}\)[/tex]

We simplify this expression by using properties of exponents:
[tex]\[ 5 \cdot 5^{x-1} = 5^1 \cdot 5^{x-1} = 5^{1 + (x-1)} = 5^x \][/tex]
Thus, Expression E is equivalent to [tex]\(5^x\)[/tex].

### Expression F: [tex]\(\left(\frac{15}{3}\right)^x\)[/tex]

We simplify this expression using properties of fractions and exponents:
[tex]\[ \left(\frac{15}{3}\right)^x = \left(5\right)^x = 5^x \][/tex]
Thus, Expression F is equivalent to [tex]\(5^x\)[/tex].

So, the equivalent expressions to [tex]\(5^x\)[/tex] are:

- A. [tex]\(\frac{15^x}{3^x}\)[/tex]
- E. [tex]\(5 \cdot 5^{x-1}\)[/tex]
- F. [tex]\(\left(\frac{15}{3}\right)^x\)[/tex]

Therefore, the result is:
[tex]\[ \boxed{A, E, F} \][/tex]