1. The slope of a line is given below. Find the slope of two lines: one parallel to the given line and one perpendicular to the given line.

[tex]\[ m = \frac{17}{29} \][/tex]

A. Parallel: [tex]\(\frac{17}{29}\)[/tex]; Perpendicular: [tex]\(\frac{29}{17}\)[/tex]

B. Parallel: [tex]\(\frac{17}{29}\)[/tex]; Perpendicular: [tex]\(-\frac{29}{17}\)[/tex]

C. Parallel: [tex]\(-\frac{29}{17}\)[/tex]; Perpendicular: [tex]\(\frac{17}{29}\)[/tex]

D. Parallel: [tex]\(\frac{17}{29}\)[/tex]; Perpendicular: [tex]\(\frac{29}{17}\)[/tex]



Answer :

Sure! Let's carefully analyze the given problem step by step.

### Step-by-Step Solution

1. Given Slope:
The given slope of the line is [tex]\( m = \frac{17}{29} \)[/tex].

2. Finding the Slope of a Parallel Line:
- Lines that are parallel have the same slope.
- Thus, the slope of a line parallel to the given line is also [tex]\( \frac{17}{29} \)[/tex].

3. Finding the Slope of a Perpendicular Line:
- Lines that are perpendicular have slopes that are negative reciprocals of each other.
- The negative reciprocal of the given slope [tex]\( \frac{17}{29} \)[/tex] can be found as follows:
1. Take the reciprocal: [tex]\( \frac{1}{\frac{17}{29}} = \frac{29}{17} \)[/tex].
2. Make it negative: [tex]\( -\frac{29}{17} \)[/tex].

4. Identifying the Correct Option:
- We need to match these findings with the correct multiple choice option.
- Let's compare:

- Option A:
- Parallel: [tex]\( 29 \)[/tex]
- Perpendicular: [tex]\( \frac{17}{29} \)[/tex]
- This is incorrect, as the parallel slope should be [tex]\( \frac{17}{29} \)[/tex].

- Option B:
- Parallel: [tex]\( \frac{17}{29} \)[/tex]
- Perpendicular: [tex]\( -\frac{29}{17} \)[/tex]
- This matches our calculations perfectly.

- Option C:
- Parallel: [tex]\( -\frac{29}{17} \)[/tex]
- Perpendicular: [tex]\( \frac{17}{29} \)[/tex]
- This is incorrect, as the perpendicular slope should be [tex]\( -\frac{29}{17} \)[/tex] and the parallel slope should be [tex]\( \frac{17}{29} \)[/tex].

- Option D:
- Parallel: [tex]\( \frac{17}{29} \)[/tex]
- Perpendicular: [tex]\( \frac{29}{17} \)[/tex]
- This is incorrect, as the perpendicular slope should be [tex]\( -\frac{29}{17} \)[/tex].

### Conclusion

Based on the detailed analysis, option B is correct.

- Slope of a line parallel to the given line: [tex]\( \frac{17}{29} \)[/tex]
- Slope of a line perpendicular to the given line: [tex]\( -\frac{29}{17} \)[/tex]

Thus, the answer is option B.