Which expression is equivalent to [tex]\frac{\left(2 g^5\right)^3}{\left(4 h^2\right)^3}[/tex]?

A. [tex]\frac{g^{15}}{8 h^6}[/tex]
B. [tex]\frac{g^5}{2 h^2}[/tex]
C. [tex]\frac{g^{15}}{2 h^6}[/tex]
D. [tex]\frac{g^8}{8 h^5}[/tex]



Answer :

To find the expression equivalent to [tex]\(\frac{(2 g^5)^3}{(4 h^2)^3}\)[/tex], let's solve this step-by-step.

Step 1: Apply the power rule to the entire numerator and denominator.

The power rule states [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex].

For the numerator [tex]\((2 g^5)^3\)[/tex]:
[tex]\[ (2 g^5)^3 = 2^3 \cdot (g^5)^3 \][/tex]
Simplify by applying the power to each:
[tex]\[ 2^3 = 8 \quad \text{and} \quad (g^5)^3 = g^{5 \cdot 3} = g^{15} \][/tex]
So, the numerator simplifies to:
[tex]\[ (2 g^5)^3 = 8 g^{15} \][/tex]

For the denominator [tex]\((4 h^2)^3\)[/tex]:
[tex]\[ (4 h^2)^3 = 4^3 \cdot (h^2)^3 \][/tex]
Simplify by applying the power to each:
[tex]\[ 4^3 = 64 \quad \text{and} \quad (h^2)^3 = h^{2 \cdot 3} = h^6 \][/tex]
So, the denominator simplifies to:
[tex]\[ (4 h^2)^3 = 64 h^6 \][/tex]

Step 2: Combine the results from the numerator and denominator.

Now, the entire expression simplifies to:
[tex]\[ \frac{(2 g^5)^3}{(4 h^2)^3} = \frac{8 g^{15}}{64 h^6} \][/tex]

Step 3: Simplify the fraction [tex]\(\frac{8}{64}\)[/tex].

The constant fraction simplifies as follows:
[tex]\[ \frac{8}{64} = \frac{1}{8} \][/tex]

Step 4: Combine the simplified constants and variables.

So, the simplified expression is:
[tex]\[ \frac{8 g^{15}}{64 h^6} = \frac{g^{15}}{8 h^6} \][/tex]

Conclusion:

The correct expression equivalent to [tex]\(\frac{(2 g^5)^3}{(4 h^2)^3}\)[/tex] is:

[tex]\[ \frac{g^{15}}{8 h^6} \][/tex]

So, the correct choice is:
[tex]\[ \boxed{\frac{g^{15}}{8 h^6}} \][/tex]