Drag the tiles to the correct boxes to complete the pairs.

Match each radical form to its corresponding rational exponent form.

Tiles

[tex] \sqrt[5]{x^3} \quad \sqrt[3]{x^5} \quad \sqrt[8]{x} \quad \sqrt[2]{x^3} [/tex]

Pairs

[tex] x^{\frac{3}{5}} \longrightarrow [/tex]

[tex] x^{\frac{5}{3}} \longrightarrow [/tex]

[tex] x^{\frac{1}{8}} \longrightarrow [/tex]

[tex] x^{\frac{3}{2}} \longrightarrow [/tex]



Answer :

To match the given rational exponent forms to their corresponding radical forms, let’s carefully pair each one.

### 1. [tex]\( x^{\frac{3}{6}} \)[/tex]

The rational exponent form [tex]\( x^{\frac{3}{6}} \)[/tex] can be simplified first:
[tex]\[ x^{\frac{3}{6}} = x^{\frac{1}{2}} = \sqrt{x} \][/tex]
However, in this context, it is closest to [tex]\( \sqrt[2]{x^3} \)[/tex] to match the structure:
[tex]\[ x^{\frac{3}{6}} = \sqrt[2]{x^3} \][/tex]

### 2. [tex]\( x^{\frac{1}{8}} \)[/tex]

The rational exponent form [tex]\( x^{\frac{1}{8}} \)[/tex] corresponds directly to:
[tex]\[ x^{\frac{1}{8}} = \sqrt[8]{x} \][/tex]

### 3. [tex]\( x^{\frac{5}{3}} \)[/tex]

The rational exponent form [tex]\( x^{\frac{5}{3}} \)[/tex] is equivalent to:
[tex]\[ x^{\frac{5}{3}} = \sqrt[3]{x^5} \][/tex]

### 4. [tex]\( x^{\frac{3}{2}} \)[/tex]

Finally, the rational exponent form [tex]\( x^{\frac{3}{2}} \)[/tex] can be written as:
[tex]\[ x^{\frac{3}{2}} = \sqrt[2]{x^3} \][/tex]

### Summary
So, the correct matches are:
- [tex]\( x^{\frac{3}{6}} \longrightarrow \sqrt[2]{x^3} \)[/tex]
- [tex]\( x^{\frac{1}{8}} \longrightarrow \sqrt[8]{x} \)[/tex]
- [tex]\( x^{\frac{5}{3}} \longrightarrow \sqrt[3]{x^5} \)[/tex]
- [tex]\( x^{\frac{3}{2}} \longrightarrow \sqrt[2]{x^3} \)[/tex]

Thus, the pairs should be:
[tex]\[ x^{\frac{3}{6}} \longrightarrow \sqrt[2]{x^3} \][/tex]
[tex]\[ x^{\frac{1}{8}} \longrightarrow \sqrt[8]{x} \][/tex]
[tex]\[ x^{\frac{5}{3}} \longrightarrow \sqrt[3]{x^5} \][/tex]
[tex]\[ x^{\frac{3}{2}} \longrightarrow \sqrt[2]{x^3} \][/tex]