Find the product.

[tex]x^3 \left(x^2 + 5x + 1\right)[/tex]

A. [tex]x^6 + 5x^4 + x^3[/tex]

B. [tex]x^5 + 5x^3 + x^3[/tex]

C. [tex]x^5 + 5x^4 + x^3[/tex]



Answer :

To find the product of the given expression [tex]\( x^3 \left( x^2 + 5x + 1 \right) \)[/tex], let's break it down into detailed steps:

1. Start with the expression:
[tex]\[ x^3 \left( x^2 + 5x + 1 \right) \][/tex]

2. Distribute [tex]\( x^3 \)[/tex] to each term inside the parentheses:

- Multiply [tex]\( x^3 \)[/tex] by [tex]\( x^2 \)[/tex]:
[tex]\[ x^3 \cdot x^2 = x^{3+2} = x^5 \][/tex]

- Multiply [tex]\( x^3 \)[/tex] by [tex]\( 5x \)[/tex]:
[tex]\[ x^3 \cdot 5x = 5 \cdot x^{3+1} = 5x^4 \][/tex]

- Multiply [tex]\( x^3 \)[/tex] by [tex]\( 1 \)[/tex]:
[tex]\[ x^3 \cdot 1 = x^3 \][/tex]

3. Combine all the results from the multiplication:
[tex]\[ x^5 + 5x^4 + x^3 \][/tex]

So, the product of [tex]\( x^3 \left( x^2 + 5x + 1 \right) \)[/tex] is:

[tex]\[ x^5 + 5x^4 + x^3 \][/tex]

Thus, the correct answer is:
[tex]\[ x^5 + 5x^4 + x^3 \][/tex]