What is the volume of the right rectangular prism with a length of 18 inches, a width of 4 inches, and a height of 10 inches?

A. [tex]\(32 \, \text{in}^3\)[/tex]
B. [tex]\(64 \, \text{in}^3\)[/tex]
C. [tex]\(720 \, \text{in}^3\)[/tex]
D. [tex]\(1,440 \, \text{in}^3\)[/tex]



Answer :

To find the volume of a right rectangular prism, you use the formula:

[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]

Given the dimensions:
- Length ([tex]\( l \)[/tex]) = 18 inches
- Width ([tex]\( w \)[/tex]) = 4 inches
- Height ([tex]\( h \)[/tex]) = 10 inches

Substitute the given values into the formula:

[tex]\[ \text{Volume} = 18 \, \text{inches} \times 4 \, \text{inches} \times 10 \, \text{inches} \][/tex]

Perform the multiplications step by step:

1. Multiply the length and the width:
[tex]\[ 18 \times 4 = 72 \][/tex]

2. Multiply the result by the height:
[tex]\[ 72 \times 10 = 720 \][/tex]

So, the volume of the right rectangular prism is:

[tex]\[ 720 \, \text{cubic inches} \][/tex]

Therefore, the correct answer is:
[tex]\[ 720 \text{ in}^3 \][/tex]