To solve the formula [tex]\( M = 2P + 3Q \)[/tex] for the variable [tex]\( Q \)[/tex], follow these steps:
1. Isolate the term containing [tex]\( Q \)[/tex] on one side of the equation. Our goal is to express [tex]\( Q \)[/tex] in terms of [tex]\( M \)[/tex] and [tex]\( P \)[/tex]:
[tex]\[
M = 2P + 3Q
\][/tex]
2. Subtract [tex]\( 2P \)[/tex] from both sides of the equation to isolate the term with [tex]\( Q \)[/tex]:
[tex]\[
M - 2P = 3Q
\][/tex]
3. Divide both sides of the equation by 3 to solve for [tex]\( Q \)[/tex]:
[tex]\[
Q = \frac{M - 2P}{3}
\][/tex]
So, the correct expression for [tex]\( Q \)[/tex] is:
[tex]\[
Q = \frac{M - 2P}{3}
\][/tex]
This matches with the formula given in the solution, [tex]\( Q = \frac{M - 2P}{3} \)[/tex].