Solve the formula [tex]$M = 2P + 3Q$[/tex] for the variable [tex]$Q$[/tex].

A. [tex]$Q = \frac{M - 2P}{3}$[/tex]
B. [tex][tex]$Q = \frac{M + 2P}{3}$[/tex][/tex]
C. [tex]$Q = 3(M - 2P)$[/tex]
D. [tex]$P = \frac{M - 3Q}{2}$[/tex]



Answer :

To solve the formula [tex]\( M = 2P + 3Q \)[/tex] for the variable [tex]\( Q \)[/tex], follow these steps:

1. Isolate the term containing [tex]\( Q \)[/tex] on one side of the equation. Our goal is to express [tex]\( Q \)[/tex] in terms of [tex]\( M \)[/tex] and [tex]\( P \)[/tex]:
[tex]\[ M = 2P + 3Q \][/tex]

2. Subtract [tex]\( 2P \)[/tex] from both sides of the equation to isolate the term with [tex]\( Q \)[/tex]:
[tex]\[ M - 2P = 3Q \][/tex]

3. Divide both sides of the equation by 3 to solve for [tex]\( Q \)[/tex]:
[tex]\[ Q = \frac{M - 2P}{3} \][/tex]

So, the correct expression for [tex]\( Q \)[/tex] is:
[tex]\[ Q = \frac{M - 2P}{3} \][/tex]

This matches with the formula given in the solution, [tex]\( Q = \frac{M - 2P}{3} \)[/tex].