Which expression is equivalent to [tex]$(3a)^{-2}$[/tex]?

A. [tex]\frac{1}{9a^2}[/tex]
B. [tex]\frac{1}{3a^2}[/tex]
C. [tex]\frac{3}{a^2}[/tex]
D. [tex]\frac{9}{a^2}[/tex]



Answer :

To determine which expression is equivalent to [tex]\((3a)^{-2}\)[/tex], we will follow a detailed, step-by-step approach.

### Step-by-Step Solution

1. Understanding the Negative Exponent:
The expression [tex]\((3a)^{-2}\)[/tex] involves a negative exponent. The property of negative exponents states that [tex]\(x^{-n} = \frac{1}{x^n}\)[/tex]. Applying this property to our expression:
[tex]\[ (3a)^{-2} = \frac{1}{(3a)^2} \][/tex]

2. Simplifying the Denominator:
We now need to simplify [tex]\((3a)^2\)[/tex]. This involves applying the exponent to both the coefficient (3) and the variable (a):
[tex]\[ (3a)^2 = (3)^2 \cdot (a)^2 \][/tex]

3. Calculating Each Component:
- The square of 3 is:
[tex]\[ 3^2 = 9 \][/tex]
- The square of [tex]\(a\)[/tex] is:
[tex]\[ a^2 \][/tex]

Therefore:
[tex]\[ (3a)^2 = 9a^2 \][/tex]

4. Putting it all together:
Substituting back into our fraction, we have:
[tex]\[ (3a)^{-2} = \frac{1}{(3a)^2} = \frac{1}{9a^2} \][/tex]

### Summary

The expression [tex]\((3a)^{-2}\)[/tex] simplifies to [tex]\(\frac{1}{9a^2}\)[/tex]. Hence, the equivalent expression is:

[tex]\[ \boxed{\frac{1}{9a^2}} \][/tex]

Thus, the correct answer is the first option:
[tex]\[ \frac{1}{9 a^2} \][/tex]