3. Use substitution to determine which value is the solution to [tex]5x + 3 = 18[/tex].

A. [tex]x = 2[/tex]
[tex]\[
\begin{array}{c}
5(2) + 3 = 10 + 3 = 13 \quad \text{(Incorrect)} \\
\end{array}
\][/tex]

B. [tex]x = 9[/tex]
[tex]\[
\begin{array}{c}
5(9) + 3 = 45 + 3 = 48 \quad \text{(Incorrect)} \\
\end{array}
\][/tex]

C. [tex]x = 1[/tex]
[tex]\[
5(1) = 18 - 3 \\
5 = 15 \quad \text{(Incorrect)}
\][/tex]

D. [tex]x = 3[/tex]
[tex]\[
5(3) + 3 = 15 + 3 = 18 \quad \text{(Correct)}
\][/tex]

Thus, the solution is [tex]x = 3[/tex].



Answer :

To determine which value is the solution to the equation [tex]\(5x + 3 = 18\)[/tex], we will go through a step-by-step substitution process for each of the given options and see which one satisfies the equation.

### Step-by-Step Solution:

1. Given equation:
[tex]\[ 5x + 3 = 18 \][/tex]

2. Isolating [tex]\(5x\)[/tex]:
[tex]\[ 5x + 3 - 3 = 18 - 3 \][/tex]
[tex]\[ 5x = 15 \][/tex]

3. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{5} \][/tex]
[tex]\[ x = 3 \][/tex]

Hence, the value that satisfies the given equation is [tex]\(x = 3\)[/tex].

Let's now verify each option to ensure the correctness:

### Verification:

A. [tex]\(x = 2\)[/tex]:
[tex]\[ 5(2) + 3 = 10 + 3 = 13 \quad \text{(Not equal to 18)} \][/tex]

B. [tex]\(x = 9\)[/tex]:
[tex]\[ 5(9) + 3 = 45 + 3 = 48 \quad \text{(Not equal to 18)} \][/tex]

C. [tex]\(x = 1\)[/tex]:
[tex]\[ 5(1) + 3 = 5 + 3 = 8 \quad \text{(Not equal to 18)} \][/tex]

D. [tex]\(x = 3\)[/tex]:
[tex]\[ 5(3) + 3 = 15 + 3 = 18 \quad \text{(Equal to 18)} \][/tex]

From our verification:
- Option D is the solution.

### Conclusion:

The solution that satisfies the equation [tex]\(5x + 3 = 18\)[/tex] is:
D. [tex]\(x = 3\)[/tex]