Answer :
To determine which value is the solution to the equation [tex]\(5x + 3 = 18\)[/tex], we will go through a step-by-step substitution process for each of the given options and see which one satisfies the equation.
### Step-by-Step Solution:
1. Given equation:
[tex]\[ 5x + 3 = 18 \][/tex]
2. Isolating [tex]\(5x\)[/tex]:
[tex]\[ 5x + 3 - 3 = 18 - 3 \][/tex]
[tex]\[ 5x = 15 \][/tex]
3. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{5} \][/tex]
[tex]\[ x = 3 \][/tex]
Hence, the value that satisfies the given equation is [tex]\(x = 3\)[/tex].
Let's now verify each option to ensure the correctness:
### Verification:
A. [tex]\(x = 2\)[/tex]:
[tex]\[ 5(2) + 3 = 10 + 3 = 13 \quad \text{(Not equal to 18)} \][/tex]
B. [tex]\(x = 9\)[/tex]:
[tex]\[ 5(9) + 3 = 45 + 3 = 48 \quad \text{(Not equal to 18)} \][/tex]
C. [tex]\(x = 1\)[/tex]:
[tex]\[ 5(1) + 3 = 5 + 3 = 8 \quad \text{(Not equal to 18)} \][/tex]
D. [tex]\(x = 3\)[/tex]:
[tex]\[ 5(3) + 3 = 15 + 3 = 18 \quad \text{(Equal to 18)} \][/tex]
From our verification:
- Option D is the solution.
### Conclusion:
The solution that satisfies the equation [tex]\(5x + 3 = 18\)[/tex] is:
D. [tex]\(x = 3\)[/tex]
### Step-by-Step Solution:
1. Given equation:
[tex]\[ 5x + 3 = 18 \][/tex]
2. Isolating [tex]\(5x\)[/tex]:
[tex]\[ 5x + 3 - 3 = 18 - 3 \][/tex]
[tex]\[ 5x = 15 \][/tex]
3. Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{5} \][/tex]
[tex]\[ x = 3 \][/tex]
Hence, the value that satisfies the given equation is [tex]\(x = 3\)[/tex].
Let's now verify each option to ensure the correctness:
### Verification:
A. [tex]\(x = 2\)[/tex]:
[tex]\[ 5(2) + 3 = 10 + 3 = 13 \quad \text{(Not equal to 18)} \][/tex]
B. [tex]\(x = 9\)[/tex]:
[tex]\[ 5(9) + 3 = 45 + 3 = 48 \quad \text{(Not equal to 18)} \][/tex]
C. [tex]\(x = 1\)[/tex]:
[tex]\[ 5(1) + 3 = 5 + 3 = 8 \quad \text{(Not equal to 18)} \][/tex]
D. [tex]\(x = 3\)[/tex]:
[tex]\[ 5(3) + 3 = 15 + 3 = 18 \quad \text{(Equal to 18)} \][/tex]
From our verification:
- Option D is the solution.
### Conclusion:
The solution that satisfies the equation [tex]\(5x + 3 = 18\)[/tex] is:
D. [tex]\(x = 3\)[/tex]