Solve the equation: [tex]\frac{5}{4} y - \frac{1}{3} = \frac{1}{2} (3y - 1)[/tex]

A. [tex]y = -10[/tex]
B. [tex]y = \frac{68}{201}[/tex]
C. [tex]y = \frac{2}{3}[/tex]
D. [tex]y = 0[/tex]



Answer :

To solve the equation [tex]\(\frac{5}{4} y - \frac{1}{3} = \frac{1}{2}(3y - 1)\)[/tex], let's go through the steps in detail:

1. Start with the given equation:
[tex]\[ \frac{5}{4}y - \frac{1}{3} = \frac{1}{2}(3y - 1) \][/tex]

2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the right-hand side:
[tex]\[ \frac{5}{4}y - \frac{1}{3} = \frac{1}{2} \cdot 3y - \frac{1}{2} \cdot 1 \][/tex]
[tex]\[ \frac{5}{4}y - \frac{1}{3} = \frac{3}{2}y - \frac{1}{2} \][/tex]

3. To eliminate the fractions, find a common denominator. The least common multiple of 4, 3, and 2 is 12. Multiply every term by 12 to clear the denominators:
[tex]\[ 12 \left(\frac{5}{4}y\right) - 12 \left(\frac{1}{3}\right) = 12 \left(\frac{3}{2}y\right) - 12 \left(\frac{1}{2}\right) \][/tex]
[tex]\[ 3 \cdot 5y - 4 = 6 \cdot 3y - 6 \][/tex]
[tex]\[ 15y - 4 = 18y - 6 \][/tex]

4. Now, get all the [tex]\(y\)[/tex] terms on one side and the constant terms on the other side by subtracting [tex]\(15y\)[/tex] from both sides:
[tex]\[ 15y - 4 - 15y = 18y - 6 - 15y \][/tex]
[tex]\[ -4 = 3y - 6 \][/tex]

5. Add 6 to both sides to isolate the [tex]\(3y\)[/tex] term:
[tex]\[ -4 + 6 = 3y \][/tex]
[tex]\[ 2 = 3y \][/tex]

6. Finally, solve for [tex]\(y\)[/tex] by dividing both sides by 3:
[tex]\[ y = \frac{2}{3} \][/tex]

So the solution to the equation [tex]\(\frac{5}{4}y - \frac{1}{3} = \frac{1}{2}(3y - 1)\)[/tex] is [tex]\(y = \frac{2}{3}\)[/tex].

Comparing this with the given options:
A. [tex]\(y = -10\)[/tex]
B. [tex]\(y = \frac{68}{201}\)[/tex]
C. [tex]\(y = \frac{2}{3}\)[/tex]
D. [tex]\(y = 0\)[/tex]

The correct answer is:
C. [tex]\(y = \frac{2}{3}\)[/tex]