Suppose that the functions [tex]g[/tex] and [tex]h[/tex] are defined as follows:

[tex]\[
\begin{array}{l}
g(x) = (6 + x)(-5 + x) \\
h(x) = 8 - x
\end{array}
\][/tex]

(a) Find [tex]\(\left(\frac{g}{h}\right)(5)\)[/tex].

(b) Find all values that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]. If there is more than one value, separate them with commas.

(a) [tex]\(\left(\frac{g}{h}\right)(5) = \square\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]: [tex]\[\][/tex]



Answer :

To solve this question, let's proceed step-by-step:

### Part (a) Calculate [tex]\(\left(\frac{g}{h}\right)(5)\)[/tex]

1. First, we need to find the values of [tex]\(g(5)\)[/tex] and [tex]\(h(5)\)[/tex].

[tex]\[ g(x) = (6 + x)(-5 + x) \][/tex]

Plugging in [tex]\(x = 5\)[/tex]:

[tex]\[ g(5) = (6 + 5)(-5 + 5) = 11 \cdot 0 = 0 \][/tex]

[tex]\[ h(x) = 8 - x \][/tex]

Plugging in [tex]\(x = 5\)[/tex]:

[tex]\[ h(5) = 8 - 5 = 3 \][/tex]

2. Now, we need to find the value of [tex]\(\left( \frac{g}{h} \right)(5)\)[/tex]:

[tex]\[ \left(\frac{g}{h}\right)(5) = \frac{g(5)}{h(5)} = \frac{0}{3} = 0 \][/tex]

So, [tex]\(\left(\frac{g}{h}\right)(5) = 0\)[/tex].

### Part (b) Find all values that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]

1. The function [tex]\(\frac{g}{h}\)[/tex] is undefined at points where [tex]\(h(x) = 0\)[/tex] since division by zero is undefined.

2. To find such [tex]\(x\)[/tex] values, solve for where [tex]\(h(x) = 0\)[/tex]:

[tex]\[ 8 - x = 0 \][/tex]

Solving for [tex]\(x\)[/tex]:

[tex]\[ x = 8 \][/tex]

3. Thus, the value that is not in the domain of [tex]\(\frac{g}{h}\)[/tex] is [tex]\(x = 8\)[/tex].

So, summarizing the solutions:

(a) [tex]\(\left(\frac{g}{h}\right)(5) = 0\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex] : [tex]\(8\)[/tex]