If [tex]$S(x)=\sqrt[4]{8 x^3}$[/tex], evaluate:

a) [tex]$S(0)=$[/tex] [tex]$\square$[/tex]

b) [tex]$S(8)=$[/tex] [tex]$\square$[/tex]



Answer :

Let's evaluate the function [tex]\( S(x) = \sqrt[4]{8x^3} \)[/tex] at two specific values, [tex]\( x = 0 \)[/tex] and [tex]\( x = 8 \)[/tex].

### Part (a) [tex]\( S(0) \)[/tex]

To find [tex]\( S(0) \)[/tex]:

1. Substitute [tex]\( x = 0 \)[/tex] into the function [tex]\( S(x) = \sqrt[4]{8x^3} \)[/tex]:

[tex]\( S(0) = \sqrt[4]{8 \cdot 0^3} \)[/tex]

2. Simplify inside the fourth root:

[tex]\( 0^3 = 0 \)[/tex]

3. Multiply by the constant 8:

[tex]\( 8 \cdot 0 = 0 \)[/tex]

4. Take the fourth root of 0:

[tex]\( \sqrt[4]{0} = 0 \)[/tex]

Therefore, [tex]\( S(0) = 0.0 \)[/tex].

### Part (b) [tex]\( S(8) \)[/tex]

To find [tex]\( S(8) \)[/tex]:

1. Substitute [tex]\( x = 8 \)[/tex] into the function [tex]\( S(x) = \sqrt[4]{8x^3} \)[/tex]:

[tex]\( S(8) = \sqrt[4]{8 \cdot 8^3} \)[/tex]

2. Calculate [tex]\( 8^3 \)[/tex]:

[tex]\( 8^3 = 512 \)[/tex]

3. Multiply by the constant 8:

[tex]\( 8 \cdot 512 = 4096 \)[/tex]

4. Take the fourth root of 4096:

[tex]\( \sqrt[4]{4096} = 8 \)[/tex]

Therefore, [tex]\( S(8) = 8.0 \)[/tex].

Summarizing the results:
a) [tex]\( S(0) = 0.0 \)[/tex]
b) [tex]\( S(8) = 8.0 \)[/tex]