Which expressions are equivalent to [tex]\frac{10}{10^{\frac{3}{4}}}[/tex]?

A. [tex]10^{\frac{4}{3}}[/tex]

B. [tex]10^{\frac{1}{4}}[/tex]

C. [tex]\sqrt[3]{10^4}[/tex]

D. [tex]\sqrt[4]{10}[/tex]



Answer :

To determine which expressions are equivalent to [tex]\(\frac{10}{10^{\frac{3}{4}}}\)[/tex], we will simplify [tex]\(\frac{10}{10^{\frac{3}{4}}}\)[/tex] and then check each of the given expressions to see if they match the simplified result.

### Simplifying [tex]\(\frac{10}{10^{\frac{3}{4}}}\)[/tex]

First, rewrite:
[tex]\[ \frac{10}{10^{\frac{3}{4}}} \][/tex]

This can be expressed as:
[tex]\[ 10 \cdot 10^{-\frac{3}{4}} \][/tex]

Recall the exponent rule [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]. Thus:
[tex]\[ 10^{1} \cdot 10^{-\frac{3}{4}} = 10^{1 - \frac{3}{4}} \][/tex]

Simplify the exponent:
[tex]\[ 10^{1 - \frac{3}{4}} = 10^{\frac{4}{4} - \frac{3}{4}} = 10^{\frac{1}{4}} \][/tex]

Therefore, [tex]\(\frac{10}{10^{\frac{3}{4}}} = 10^{\frac{1}{4}}\)[/tex].

### Checking the given expressions:

1. [tex]\(10^{\frac{4}{3}}\)[/tex]:

[tex]\[ 10^{\frac{4}{3}} \approx 21.544 \][/tex]

This is not the same as [tex]\(10^{\frac{1}{4}}\)[/tex].

2. [tex]\(10^{\frac{1}{4}}\)[/tex]:

[tex]\[ 10^{\frac{1}{4}} \approx 1.778 \][/tex]

This matches our simplified result [tex]\(10^{\frac{1}{4}}\)[/tex].

3. [tex]\(\sqrt[3]{10^4}\)[/tex]:
[tex]\[ \sqrt[3]{10^4} = (10^4)^{\frac{1}{3}} = 10^{\frac{4}{3}} \approx 21.544 \][/tex]

This is not the same as [tex]\(10^{\frac{1}{4}}\)[/tex].

4. [tex]\(\sqrt[4]{10}\)[/tex]:
[tex]\[ \sqrt[4]{10} = 10^{\frac{1}{4}} \approx 1.778 \][/tex]

This matches our simplified result [tex]\(10^{\frac{1}{4}}\)[/tex].

### Conclusion

The expressions that are equivalent to [tex]\(\frac{10}{10^{\frac{3}{4}}}\)[/tex] are:

- [tex]\(10^{\frac{1}{4}}\)[/tex]
- [tex]\(\sqrt[4]{10}\)[/tex]