Solve the following quadratic equation using the quadratic formula.

Nathaniel is using the quadratic formula to solve [tex]\(0=x^2+5x-6\)[/tex]. His steps are shown below:

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Step 1:} & \text{Gather necessary information.} \\
& x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}; \quad a = 1, \quad b = 5, \quad c = -6 \\
\hline
\text{Step 2:} & \text{Substitute.} \\
& x = \frac{-5 \pm \sqrt{(5)^2 - 4(1)(-6)}}{2(1)} \\
\hline
\text{Step 3:} & \text{Simplify.} \\
& x = \frac{-5 \pm \sqrt{49}}{2} \\
\hline
\end{array}
\][/tex]

What are the solutions to the equation?

A. [tex]\(x = -1, 6\)[/tex]

B. [tex]\(x = -6, 1\)[/tex]

C. [tex]\(x = -22, 27\)[/tex]

D. [tex]\(x = -27, 22\)[/tex]

Mark this and return.
Save and Exit.



Answer :

To find the solutions to the equation [tex]\( 0 = x^2 + 5x - 6 \)[/tex] using the quadratic formula, let's walk through the given steps in detail:

### Step 1: Gather necessary information
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In the given quadratic equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 5 \)[/tex]
- [tex]\( c = -6 \)[/tex]

### Step 2: Substitute these values into the quadratic formula
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\( a = 1 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -6 \)[/tex]:
[tex]\[ x = \frac{-5 \pm \sqrt{(5)^2 - 4(1)(-6)}}{2(1)} \][/tex]

### Step 3: Simplify the expression under the square root (the discriminant) and complete the formula
First, calculate the discriminant ([tex]\( b^2 - 4ac \)[/tex]):
[tex]\[ b^2 - 4ac = (5)^2 - 4(1)(-6) \][/tex]
[tex]\[ = 25 + 24 \][/tex]
[tex]\[ = 49 \][/tex]

Now, continue plugging the values into the quadratic formula:
[tex]\[ x = \frac{-5 \pm \sqrt{49}}{2} \][/tex]

Since the square root of 49 is 7, we get two possible solutions:
[tex]\[ x = \frac{-5 + 7}{2} \quad \text{and} \quad x = \frac{-5 - 7}{2} \][/tex]

Calculate each of these solutions:
[tex]\[ x = \frac{-5 + 7}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ x = \frac{-5 - 7}{2} = \frac{-12}{2} = -6 \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( x^2 + 5x - 6 = 0 \)[/tex] are:
[tex]\[ x = 1 \quad \text{and} \quad x = -6 \][/tex]

So, the correctly simplified and computed solutions in ascending order are:
[tex]\[ \boxed{x = -6, 1} \][/tex]