If [tex]$A = x^2 + 5x + 17$[/tex] and [tex]$B = 9x^2 - 9x + 2$[/tex], then find the factors of [tex][tex]$A - B$[/tex][/tex].



Answer :

Given the polynomials [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ A = x^2 + 5x + 17 \][/tex]
[tex]\[ B = 9x^2 - 9x + 2 \][/tex]

We need to find the factors of [tex]\( A - B \)[/tex].

Step-by-Step Solution:

1. Subtract the polynomials: Calculate [tex]\( A - B \)[/tex].

[tex]\[ A - B = (x^2 + 5x + 17) - (9x^2 - 9x + 2) \][/tex]

2. Distribute the subtraction through the terms:

[tex]\[ A - B = x^2 + 5x + 17 - 9x^2 + 9x - 2 \][/tex]

3. Combine like terms:

Combining the [tex]\( x^2 \)[/tex] terms:
[tex]\[ x^2 - 9x^2 = -8x^2 \][/tex]

Combining the [tex]\( x \)[/tex] terms:
[tex]\[ 5x + 9x = 14x \][/tex]

Combining the constant terms:
[tex]\[ 17 - 2 = 15 \][/tex]

So,
[tex]\[ A - B = -8x^2 + 14x + 15 \][/tex]

4. Factor the resulting polynomial:

The polynomial [tex]\( -8x^2 + 14x + 15 \)[/tex] can be factored into:

[tex]\[ -(2x - 5)(4x + 3) \][/tex]

So, the factors of [tex]\( A - B \)[/tex] are:

[tex]\[ -(2x - 5)(4x + 3) \][/tex]