What are the domain, range, and asymptote of [tex]h(x) = 2^{x+4}[/tex]?

A. Domain: [tex]\{x \mid x \ \textgreater \ 0\}[/tex]; Range: [tex]\{y \mid y \text{ is a real number}\}[/tex]; Asymptote: [tex]y = 0[/tex]
B. Domain: [tex]\{x \mid x \ \textgreater \ -4\}[/tex]; Range: [tex]\{y \mid y \text{ is a real number}\}[/tex]; Asymptote: [tex]y = -4[/tex]
C. Domain: [tex]\{x \mid x \text{ is a real number}\}[/tex]; Range: [tex]\{y \mid y \ \textgreater \ 0\}[/tex]; Asymptote: [tex]y = 0[/tex]
D. Domain: [tex]\{x \mid x \text{ is a real number}\}[/tex]; Range: [tex]\{y \mid y \ \textgreater \ 0\}[/tex]; Asymptote: [tex]y = -4[/tex]



Answer :

To determine the domain, range, and asymptote of the function [tex]\( h(x) = 2^{x+4} \)[/tex], let us go through each part step by step.

1. Domain:
- The domain of an exponential function of the form [tex]\( a^{x+b} \)[/tex] where [tex]\( a > 0 \)[/tex] is all real numbers. This is because exponentiation is defined for all real numbers.
- Therefore, the domain of [tex]\( h(x) = 2^{x+4} \)[/tex] is [tex]\( \{ x \mid x \text{ is a real number} \} \)[/tex].

2. Range:
- The range of an exponential function [tex]\( a^{x+b} \)[/tex] where [tex]\( a > 0 \)[/tex] and [tex]\( a \neq 1 \)[/tex] is all positive real numbers. This is because an exponential function always grows and never touches zero or goes negative.
- Therefore, the range of [tex]\( h(x) = 2^{x+4} \)[/tex] is [tex]\( \{ y \mid y > 0 \} \)[/tex].

3. Asymptote:
- The horizontal asymptote of an exponential function [tex]\( a^{x+b} \)[/tex] is the horizontal line that the graph of the function approaches but never touches.
- For the function [tex]\( h(x) = 2^{x+4} \)[/tex], as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( 2^{x+4} \)[/tex] approaches zero.
- Therefore, the horizontal asymptote of [tex]\( h(x) = 2^{x+4} \)[/tex] is [tex]\( y = 0 \)[/tex].

So, the correct answers are:

- Domain: [tex]\( \{ x \mid x \text{ is a real number} \} \)[/tex]
- Range: [tex]\( \{ y \mid y > 0 \} \)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]

Hence, the correct option is:

Domain: [tex]\( \{ x \mid x \text{ is a real number} \} \)[/tex]; Range: [tex]\( \{ y \mid y > 0 \} \)[/tex]; Asymptote: [tex]\( y = 0 \)[/tex]