Answer :
Let's analyze the given surveys step by step.
Step 1: Calculate the standard error for each survey.
The formula for the standard error of proportion (SE) is:
[tex]\[ SE = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
where [tex]\( p \)[/tex] is the proportion of positive responses and [tex]\( n \)[/tex] is the sample size.
For Survey A:
- Sample size, [tex]\( n_A = 1000 \)[/tex]
- Proportion, [tex]\( p_A = 0.88 \)[/tex]
So, the standard error for Survey A ([tex]\( SE_A \)[/tex]) is:
[tex]\[ SE_A = \sqrt{\frac{0.88 \times (1 - 0.88)}{1000}} = 0.010276186062932104 \][/tex]
For Survey B:
- Sample size, [tex]\( n_B = 1600 \)[/tex]
- Proportion, [tex]\( p_B = 0.82 \)[/tex]
So, the standard error for Survey B ([tex]\( SE_B \)[/tex]) is:
[tex]\[ SE_B = \sqrt{\frac{0.82 \times (1 - 0.82)}{1600}} = 0.009604686356149274 \][/tex]
Step 2: Calculate the 95% confidence interval (CI) for each survey.
The formula for the confidence interval is:
[tex]\[ CI = \left( p - z \times SE, p + z \times SE \right) \][/tex]
where [tex]\( z \)[/tex] is the Z-value for the desired confidence level (1.96 for 95%).
For Survey A:
[tex]\[ CI_A = \left( 0.88 - 1.96 \times 0.010276186062932104, 0.88 + 1.96 \times 0.010276186062932104 \right) \][/tex]
[tex]\[ CI_A = (0.859858675316653, 0.900141324683347) \][/tex]
For Survey B:
[tex]\[ CI_B = \left( 0.82 - 1.96 \times 0.009604686356149274, 0.82 + 1.96 \times 0.009604686356149274 \right) \][/tex]
[tex]\[ CI_B = (0.8011748147419474, 0.8388251852580525) \][/tex]
Step 3: Determine the width of the confidence intervals.
The width of a confidence interval is given by the difference between the upper and lower bounds of the interval.
For Survey A:
[tex]\[ \text{CI width}_A = 0.900141324683347 - 0.859858675316653 = 0.0402826493666939 \][/tex]
For Survey B:
[tex]\[ \text{CI width}_B = 0.8388251852580525 - 0.8011748147419474 = 0.03765037051610509 \][/tex]
Step 4: Comparison of confidence intervals.
- The width of the confidence interval is smaller for Survey B: [tex]\( 0.03765037051610509 \)[/tex] compared to Survey A: [tex]\( 0.0402826493666939 \)[/tex].
Based on this analysis, the true statement is:
- The confidence interval is smaller for Survey B.
Step 1: Calculate the standard error for each survey.
The formula for the standard error of proportion (SE) is:
[tex]\[ SE = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
where [tex]\( p \)[/tex] is the proportion of positive responses and [tex]\( n \)[/tex] is the sample size.
For Survey A:
- Sample size, [tex]\( n_A = 1000 \)[/tex]
- Proportion, [tex]\( p_A = 0.88 \)[/tex]
So, the standard error for Survey A ([tex]\( SE_A \)[/tex]) is:
[tex]\[ SE_A = \sqrt{\frac{0.88 \times (1 - 0.88)}{1000}} = 0.010276186062932104 \][/tex]
For Survey B:
- Sample size, [tex]\( n_B = 1600 \)[/tex]
- Proportion, [tex]\( p_B = 0.82 \)[/tex]
So, the standard error for Survey B ([tex]\( SE_B \)[/tex]) is:
[tex]\[ SE_B = \sqrt{\frac{0.82 \times (1 - 0.82)}{1600}} = 0.009604686356149274 \][/tex]
Step 2: Calculate the 95% confidence interval (CI) for each survey.
The formula for the confidence interval is:
[tex]\[ CI = \left( p - z \times SE, p + z \times SE \right) \][/tex]
where [tex]\( z \)[/tex] is the Z-value for the desired confidence level (1.96 for 95%).
For Survey A:
[tex]\[ CI_A = \left( 0.88 - 1.96 \times 0.010276186062932104, 0.88 + 1.96 \times 0.010276186062932104 \right) \][/tex]
[tex]\[ CI_A = (0.859858675316653, 0.900141324683347) \][/tex]
For Survey B:
[tex]\[ CI_B = \left( 0.82 - 1.96 \times 0.009604686356149274, 0.82 + 1.96 \times 0.009604686356149274 \right) \][/tex]
[tex]\[ CI_B = (0.8011748147419474, 0.8388251852580525) \][/tex]
Step 3: Determine the width of the confidence intervals.
The width of a confidence interval is given by the difference between the upper and lower bounds of the interval.
For Survey A:
[tex]\[ \text{CI width}_A = 0.900141324683347 - 0.859858675316653 = 0.0402826493666939 \][/tex]
For Survey B:
[tex]\[ \text{CI width}_B = 0.8388251852580525 - 0.8011748147419474 = 0.03765037051610509 \][/tex]
Step 4: Comparison of confidence intervals.
- The width of the confidence interval is smaller for Survey B: [tex]\( 0.03765037051610509 \)[/tex] compared to Survey A: [tex]\( 0.0402826493666939 \)[/tex].
Based on this analysis, the true statement is:
- The confidence interval is smaller for Survey B.