What is the first term of the product of [tex]\left(3x^2 - 2x\right)\left(6x^3 - 2x^4 + 3x\right)[/tex] when it is written in standard form?

Select one:
a. [tex]22x^5[/tex]
b. [tex]-6x^6[/tex]
c. [tex]-12x^4[/tex]
d. [tex]18x^5[/tex]



Answer :

To solve the problem of finding the first term of the polynomial product [tex]\(\left(3x^2 - 2x\right)\left(6x^3 - 2x^4 + 3x\right)\)[/tex] when it is expressed in standard form, follow these steps:

1. Write down the given polynomials:
[tex]\[ P(x) = 3x^2 - 2x \][/tex]
[tex]\[ Q(x) = 6x^3 - 2x^4 + 3x \][/tex]

2. Identify and multiply each pair of terms from the two polynomials:

- Multiply [tex]\(3x^2\)[/tex] with each term in [tex]\(Q(x)\)[/tex]:
[tex]\[ 3x^2 \cdot 6x^3 = 18x^5 \][/tex]
[tex]\[ 3x^2 \cdot (-2x^4) = -6x^6 \][/tex]
[tex]\[ 3x^2 \cdot 3x = 9x^3 \][/tex]

- Multiply [tex]\(-2x\)[/tex] with each term in [tex]\(Q(x)\)[/tex]:
[tex]\[ -2x \cdot 6x^3 = -12x^4 \][/tex]
[tex]\[ -2x \cdot (-2x^4) = 4x^5 \][/tex]
[tex]\[ -2x \cdot 3x = -6x^2 \][/tex]

3. Combine the resulting individual products:

[tex]\[ 18x^5 - 6x^6 + 9x^3 - 12x^4 + 4x^5 - 6x^2 \][/tex]

4. Group and combine like terms:

[tex]\[ -6x^6 + (18x^5 + 4x^5) - 12x^4 + 9x^3 - 6x^2 \][/tex]
[tex]\[ -6x^6 + 22x^5 - 12x^4 + 9x^3 - 6x^2 \][/tex]

5. Identify the first term in the standard form:
The first term in standard form (highest power term) is [tex]\(-6x^6\)[/tex].

Therefore, the first term when this product is written in standard form is [tex]\(-12 x^4\)[/tex], and the correct answer is:

c. [tex]\(-12 x^4\)[/tex]