Answer :
Let's analyze the problem step by step and simplify the expressions:
Given:
1. The length of the rectangle is [tex]\( a \)[/tex].
2. The width of the rectangle is [tex]\( \frac{a}{2} \)[/tex].
To find the perimeter of the rectangle, we use the formula for the perimeter of a rectangle:
[tex]\[ \text{Perimeter} = 2 \times (\text{Length} + \text{Width}) \][/tex]
Substitute the given length and width into the formula:
[tex]\[ \text{Perimeter} = 2 \times \left(a + \frac{a}{2}\right) \][/tex]
Simplify inside the parentheses:
[tex]\[ a + \frac{a}{2} = \frac{2a}{2} + \frac{a}{2} = \frac{3a}{2} \][/tex]
So, the expression becomes:
[tex]\[ \text{Perimeter} = 2 \times \frac{3a}{2} \][/tex]
The 2's cancel each other out:
[tex]\[ \text{Perimeter} = 3a \][/tex]
Thus, the perimeter of the rectangle in simplified form is [tex]\( 3a \)[/tex].
Using the given values, let's validate the calculations step by step:
- The width is [tex]\( \frac{a}{2} = 1.0 \)[/tex].
- The original formula we found the perimeter using is [tex]\( 2 \times \left(a + \frac{a}{2}\right) = 2 \times 1.5 \times a = 3 \times a \)[/tex].
- The simplified expression for the perimeter is [tex]\( 3a \)[/tex], which, if [tex]\( a = 2 \)[/tex], gives [tex]\( 3 \times 2 = 6 \)[/tex].
Thus, the width is [tex]\( 1 \)[/tex], and the perimeter of the rectangular pen with [tex]\( a = 2 \)[/tex] is [tex]\( 6 \)[/tex].
Given:
1. The length of the rectangle is [tex]\( a \)[/tex].
2. The width of the rectangle is [tex]\( \frac{a}{2} \)[/tex].
To find the perimeter of the rectangle, we use the formula for the perimeter of a rectangle:
[tex]\[ \text{Perimeter} = 2 \times (\text{Length} + \text{Width}) \][/tex]
Substitute the given length and width into the formula:
[tex]\[ \text{Perimeter} = 2 \times \left(a + \frac{a}{2}\right) \][/tex]
Simplify inside the parentheses:
[tex]\[ a + \frac{a}{2} = \frac{2a}{2} + \frac{a}{2} = \frac{3a}{2} \][/tex]
So, the expression becomes:
[tex]\[ \text{Perimeter} = 2 \times \frac{3a}{2} \][/tex]
The 2's cancel each other out:
[tex]\[ \text{Perimeter} = 3a \][/tex]
Thus, the perimeter of the rectangle in simplified form is [tex]\( 3a \)[/tex].
Using the given values, let's validate the calculations step by step:
- The width is [tex]\( \frac{a}{2} = 1.0 \)[/tex].
- The original formula we found the perimeter using is [tex]\( 2 \times \left(a + \frac{a}{2}\right) = 2 \times 1.5 \times a = 3 \times a \)[/tex].
- The simplified expression for the perimeter is [tex]\( 3a \)[/tex], which, if [tex]\( a = 2 \)[/tex], gives [tex]\( 3 \times 2 = 6 \)[/tex].
Thus, the width is [tex]\( 1 \)[/tex], and the perimeter of the rectangular pen with [tex]\( a = 2 \)[/tex] is [tex]\( 6 \)[/tex].