If [tex]$a$[/tex] represents the width of a rectangular pen, then:

- Length = [tex]$2a$[/tex]
- Perimeter = 68

If [tex]$a$[/tex] represents the length of the same rectangular pen, then:

- Width = [tex]$\frac{a}{2}$[/tex]

Use the formula for perimeter:

[tex]\[
\begin{aligned}
\text{Perimeter of rectangle} &= 2 \times (\text{length} + \text{width}) \\
&= 2 \left(a + \frac{a}{2}\right) \\
&= 2 \left(\frac{3a}{2}\right) \\
&= 3a
\end{aligned}
\][/tex]

The expression [tex]$3a$[/tex] represents the perimeter of the rectangular pen if [tex]$a$[/tex] is the length of the pen.



Answer :

Let's break this down step-by-step to explain what happens if the variable [tex]\( a \)[/tex] represents the length of a rectangular pen.

1. Understanding the Relationships:
- Suppose [tex]\( a \)[/tex] represents the length of the rectangular pen.
- The width of the pen is given as [tex]\( \frac{a}{2} \)[/tex].

2. Formulating the Perimeter:
- The formula for the perimeter of a rectangle is [tex]\( 2(\text{length} + \text{width}) \)[/tex].
- With [tex]\( a \)[/tex] as the length and [tex]\( \frac{a}{2} \)[/tex] as the width, substitute these values into the formula:
[tex]\[ \text{Perimeter} = 2(a + \frac{a}{2}) \][/tex]

3. Simplifying the Expression:
- Inside the parentheses, add the length and width:
[tex]\[ a + \frac{a}{2} = \frac{2a}{2} + \frac{a}{2} = \frac{2a + a}{2} = \frac{3a}{2} \][/tex]
- Now, multiply by 2 to find the perimeter:
[tex]\[ 2 \left(\frac{3a}{2}\right) = 3a \][/tex]

4. Conclusion:
- The width of the pen when the length is [tex]\( a \)[/tex] is [tex]\( \frac{a}{2} \)[/tex].
- The perimeter of the pen is [tex]\( 3a \)[/tex].

Given these steps, the key results are:
- The width is half of the length, or [tex]\( \frac{a}{2} \)[/tex].
- The expression representing the perimeter of the rectangular pen if [tex]\( a \)[/tex] is the length is [tex]\( 3a \)[/tex].