The function [tex]$g(x)$[/tex] is defined as [tex]$g(x) = 6x^2 + 23x - 4$[/tex]. When does [tex][tex]$g(x) = 0$[/tex][/tex]?

A. [tex]$x = -6$[/tex] or [tex]$x = \frac{1}{4}$[/tex]
B. [tex][tex]$x = -4$[/tex][/tex] or [tex]$x = \frac{1}{6}$[/tex]
C. [tex]$x = -\frac{1}{4}$[/tex] or [tex][tex]$x = 6$[/tex][/tex]
D. [tex]$x = -\frac{1}{6}$[/tex] or [tex]$x = 4$[/tex]



Answer :

Let's solve the quadratic equation [tex]\( g(x) = 6x^2 + 23x - 4 = 0 \)[/tex].

To solve the quadratic equation, we will use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients are:
- [tex]\( a = 6 \)[/tex]
- [tex]\( b = 23 \)[/tex]
- [tex]\( c = -4 \)[/tex]

First, we calculate the discriminant:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substituting the values:

[tex]\[ \Delta = 23^2 - 4 \cdot 6 \cdot (-4) \][/tex]
[tex]\[ \Delta = 529 + 96 \][/tex]
[tex]\[ \Delta = 625 \][/tex]

Next, we find the square root of the discriminant:

[tex]\[ \sqrt{625} = 25 \][/tex]

Now, we use the quadratic formula to find the roots:

[tex]\[ x = \frac{-23 \pm 25}{2 \cdot 6} \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{-23 + 25}{12} = \frac{2}{12} = \frac{1}{6} \][/tex]

and

[tex]\[ x_2 = \frac{-23 - 25}{12} = \frac{-48}{12} = -4 \][/tex]

So, the solutions to the equation [tex]\( g(x) = 0 \)[/tex] are:

[tex]\[ x = \frac{1}{6} \quad \text{or} \quad x = -4 \][/tex]

Now, let's compare these solutions with the provided options:

1. [tex]\( x = -6 \)[/tex] or [tex]\( x = \frac{1}{4} \)[/tex]
2. [tex]\( x = -4 \)[/tex] or [tex]\( x = \frac{1}{6} \)[/tex]
3. [tex]\( x = -\frac{1}{4} \)[/tex] or [tex]\( x = 6 \)[/tex]
4. [tex]\( x = -\frac{1}{6} \)[/tex] or [tex]\( x = 4 \)[/tex]

By matching the solutions, we see that the correct option is:

[tex]\[ x = -4 \quad \text{or} \quad x = \frac{1}{6} \][/tex]

Therefore, the correct answer is:

Option 2: [tex]\( x = -4 \)[/tex] or [tex]\( x = \frac{1}{6} \)[/tex]